Whakaoti mō x
x=-45
x=40
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+5\right)\times 360-x\times 360=x\left(x+5\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+5.
360x+1800-x\times 360=x\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te 360.
360x+1800-x\times 360=x^{2}+5x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+5.
360x+1800-x\times 360-x^{2}=5x
Tangohia te x^{2} mai i ngā taha e rua.
360x+1800-x\times 360-x^{2}-5x=0
Tangohia te 5x mai i ngā taha e rua.
355x+1800-x\times 360-x^{2}=0
Pahekotia te 360x me -5x, ka 355x.
355x+1800-360x-x^{2}=0
Whakareatia te -1 ki te 360, ka -360.
-5x+1800-x^{2}=0
Pahekotia te 355x me -360x, ka -5x.
-x^{2}-5x+1800=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=-1800=-1800
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+1800. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-1800 2,-900 3,-600 4,-450 5,-360 6,-300 8,-225 9,-200 10,-180 12,-150 15,-120 18,-100 20,-90 24,-75 25,-72 30,-60 36,-50 40,-45
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1800.
1-1800=-1799 2-900=-898 3-600=-597 4-450=-446 5-360=-355 6-300=-294 8-225=-217 9-200=-191 10-180=-170 12-150=-138 15-120=-105 18-100=-82 20-90=-70 24-75=-51 25-72=-47 30-60=-30 36-50=-14 40-45=-5
Tātaihia te tapeke mō ia takirua.
a=40 b=-45
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(-x^{2}+40x\right)+\left(-45x+1800\right)
Tuhia anō te -x^{2}-5x+1800 hei \left(-x^{2}+40x\right)+\left(-45x+1800\right).
x\left(-x+40\right)+45\left(-x+40\right)
Tauwehea te x i te tuatahi me te 45 i te rōpū tuarua.
\left(-x+40\right)\left(x+45\right)
Whakatauwehea atu te kīanga pātahi -x+40 mā te whakamahi i te āhuatanga tātai tohatoha.
x=40 x=-45
Hei kimi otinga whārite, me whakaoti te -x+40=0 me te x+45=0.
\left(x+5\right)\times 360-x\times 360=x\left(x+5\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+5.
360x+1800-x\times 360=x\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te 360.
360x+1800-x\times 360=x^{2}+5x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+5.
360x+1800-x\times 360-x^{2}=5x
Tangohia te x^{2} mai i ngā taha e rua.
360x+1800-x\times 360-x^{2}-5x=0
Tangohia te 5x mai i ngā taha e rua.
355x+1800-x\times 360-x^{2}=0
Pahekotia te 360x me -5x, ka 355x.
355x+1800-360x-x^{2}=0
Whakareatia te -1 ki te 360, ka -360.
-5x+1800-x^{2}=0
Pahekotia te 355x me -360x, ka -5x.
-x^{2}-5x+1800=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 1800}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -5 mō b, me 1800 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\times 1800}}{2\left(-1\right)}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\times 1800}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-5\right)±\sqrt{25+7200}}{2\left(-1\right)}
Whakareatia 4 ki te 1800.
x=\frac{-\left(-5\right)±\sqrt{7225}}{2\left(-1\right)}
Tāpiri 25 ki te 7200.
x=\frac{-\left(-5\right)±85}{2\left(-1\right)}
Tuhia te pūtakerua o te 7225.
x=\frac{5±85}{2\left(-1\right)}
Ko te tauaro o -5 ko 5.
x=\frac{5±85}{-2}
Whakareatia 2 ki te -1.
x=\frac{90}{-2}
Nā, me whakaoti te whārite x=\frac{5±85}{-2} ina he tāpiri te ±. Tāpiri 5 ki te 85.
x=-45
Whakawehe 90 ki te -2.
x=-\frac{80}{-2}
Nā, me whakaoti te whārite x=\frac{5±85}{-2} ina he tango te ±. Tango 85 mai i 5.
x=40
Whakawehe -80 ki te -2.
x=-45 x=40
Kua oti te whārite te whakatau.
\left(x+5\right)\times 360-x\times 360=x\left(x+5\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+5.
360x+1800-x\times 360=x\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te 360.
360x+1800-x\times 360=x^{2}+5x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+5.
360x+1800-x\times 360-x^{2}=5x
Tangohia te x^{2} mai i ngā taha e rua.
360x+1800-x\times 360-x^{2}-5x=0
Tangohia te 5x mai i ngā taha e rua.
355x+1800-x\times 360-x^{2}=0
Pahekotia te 360x me -5x, ka 355x.
355x-x\times 360-x^{2}=-1800
Tangohia te 1800 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
355x-360x-x^{2}=-1800
Whakareatia te -1 ki te 360, ka -360.
-5x-x^{2}=-1800
Pahekotia te 355x me -360x, ka -5x.
-x^{2}-5x=-1800
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-5x}{-1}=-\frac{1800}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{5}{-1}\right)x=-\frac{1800}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+5x=-\frac{1800}{-1}
Whakawehe -5 ki te -1.
x^{2}+5x=1800
Whakawehe -1800 ki te -1.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=1800+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=1800+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{7225}{4}
Tāpiri 1800 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{7225}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{7225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{85}{2} x+\frac{5}{2}=-\frac{85}{2}
Whakarūnātia.
x=40 x=-45
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}