Whakaoti mō n
n = \frac{3 \sqrt{1601} + 119}{2} \approx 119.518747071
n=\frac{119-3\sqrt{1601}}{2}\approx -0.518747071
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 360 } { n - 1 } + \frac { 360 } { n + 2 } = 6
Tohaina
Kua tāruatia ki te papatopenga
\left(n+2\right)\times 360+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Tē taea kia ōrite te tāupe n ki tētahi o ngā uara -2,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(n-1\right)\left(n+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o n-1,n+2.
360n+720+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te n+2 ki te 360.
360n+720+360n-360=6\left(n-1\right)\left(n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te 360.
720n+720-360=6\left(n-1\right)\left(n+2\right)
Pahekotia te 360n me 360n, ka 720n.
720n+360=6\left(n-1\right)\left(n+2\right)
Tangohia te 360 i te 720, ka 360.
720n+360=\left(6n-6\right)\left(n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te n-1.
720n+360=6n^{2}+6n-12
Whakamahia te āhuatanga tuaritanga hei whakarea te 6n-6 ki te n+2 ka whakakotahi i ngā kupu rite.
720n+360-6n^{2}=6n-12
Tangohia te 6n^{2} mai i ngā taha e rua.
720n+360-6n^{2}-6n=-12
Tangohia te 6n mai i ngā taha e rua.
714n+360-6n^{2}=-12
Pahekotia te 720n me -6n, ka 714n.
714n+360-6n^{2}+12=0
Me tāpiri te 12 ki ngā taha e rua.
714n+372-6n^{2}=0
Tāpirihia te 360 ki te 12, ka 372.
-6n^{2}+714n+372=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-714±\sqrt{714^{2}-4\left(-6\right)\times 372}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 714 mō b, me 372 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-714±\sqrt{509796-4\left(-6\right)\times 372}}{2\left(-6\right)}
Pūrua 714.
n=\frac{-714±\sqrt{509796+24\times 372}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
n=\frac{-714±\sqrt{509796+8928}}{2\left(-6\right)}
Whakareatia 24 ki te 372.
n=\frac{-714±\sqrt{518724}}{2\left(-6\right)}
Tāpiri 509796 ki te 8928.
n=\frac{-714±18\sqrt{1601}}{2\left(-6\right)}
Tuhia te pūtakerua o te 518724.
n=\frac{-714±18\sqrt{1601}}{-12}
Whakareatia 2 ki te -6.
n=\frac{18\sqrt{1601}-714}{-12}
Nā, me whakaoti te whārite n=\frac{-714±18\sqrt{1601}}{-12} ina he tāpiri te ±. Tāpiri -714 ki te 18\sqrt{1601}.
n=\frac{119-3\sqrt{1601}}{2}
Whakawehe -714+18\sqrt{1601} ki te -12.
n=\frac{-18\sqrt{1601}-714}{-12}
Nā, me whakaoti te whārite n=\frac{-714±18\sqrt{1601}}{-12} ina he tango te ±. Tango 18\sqrt{1601} mai i -714.
n=\frac{3\sqrt{1601}+119}{2}
Whakawehe -714-18\sqrt{1601} ki te -12.
n=\frac{119-3\sqrt{1601}}{2} n=\frac{3\sqrt{1601}+119}{2}
Kua oti te whārite te whakatau.
\left(n+2\right)\times 360+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Tē taea kia ōrite te tāupe n ki tētahi o ngā uara -2,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(n-1\right)\left(n+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o n-1,n+2.
360n+720+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te n+2 ki te 360.
360n+720+360n-360=6\left(n-1\right)\left(n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te 360.
720n+720-360=6\left(n-1\right)\left(n+2\right)
Pahekotia te 360n me 360n, ka 720n.
720n+360=6\left(n-1\right)\left(n+2\right)
Tangohia te 360 i te 720, ka 360.
720n+360=\left(6n-6\right)\left(n+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te n-1.
720n+360=6n^{2}+6n-12
Whakamahia te āhuatanga tuaritanga hei whakarea te 6n-6 ki te n+2 ka whakakotahi i ngā kupu rite.
720n+360-6n^{2}=6n-12
Tangohia te 6n^{2} mai i ngā taha e rua.
720n+360-6n^{2}-6n=-12
Tangohia te 6n mai i ngā taha e rua.
714n+360-6n^{2}=-12
Pahekotia te 720n me -6n, ka 714n.
714n-6n^{2}=-12-360
Tangohia te 360 mai i ngā taha e rua.
714n-6n^{2}=-372
Tangohia te 360 i te -12, ka -372.
-6n^{2}+714n=-372
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-6n^{2}+714n}{-6}=-\frac{372}{-6}
Whakawehea ngā taha e rua ki te -6.
n^{2}+\frac{714}{-6}n=-\frac{372}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
n^{2}-119n=-\frac{372}{-6}
Whakawehe 714 ki te -6.
n^{2}-119n=62
Whakawehe -372 ki te -6.
n^{2}-119n+\left(-\frac{119}{2}\right)^{2}=62+\left(-\frac{119}{2}\right)^{2}
Whakawehea te -119, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{119}{2}. Nā, tāpiria te pūrua o te -\frac{119}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-119n+\frac{14161}{4}=62+\frac{14161}{4}
Pūruatia -\frac{119}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-119n+\frac{14161}{4}=\frac{14409}{4}
Tāpiri 62 ki te \frac{14161}{4}.
\left(n-\frac{119}{2}\right)^{2}=\frac{14409}{4}
Tauwehea n^{2}-119n+\frac{14161}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{119}{2}\right)^{2}}=\sqrt{\frac{14409}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{119}{2}=\frac{3\sqrt{1601}}{2} n-\frac{119}{2}=-\frac{3\sqrt{1601}}{2}
Whakarūnātia.
n=\frac{3\sqrt{1601}+119}{2} n=\frac{119-3\sqrt{1601}}{2}
Me tāpiri \frac{119}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}