Aromātai
\frac{36x^{8}y^{10}}{29}
Kimi Pārōnaki e ai ki x
\frac{288x^{7}y^{10}}{29}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 36 x ^ { 16 } y ^ { 18 } } { 29 x ^ { 8 } y ^ { 8 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{36^{1}x^{16}y^{18}}{29^{1}x^{8}y^{8}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{36^{1}}{29^{1}}x^{16-8}y^{18-8}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{36^{1}}{29^{1}}x^{8}y^{18-8}
Tango 8 mai i 16.
\frac{36^{1}}{29^{1}}x^{8}y^{10}
Tango 8 mai i 18.
\frac{36}{29}x^{8}y^{10}
Whakawehe 36 ki te 29.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{36y^{18}}{29y^{8}}x^{16-8})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{36y^{10}}{29}x^{8})
Mahia ngā tātaitanga.
8\times \frac{36y^{10}}{29}x^{8-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{288y^{10}}{29}x^{7}
Mahia ngā tātaitanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}