Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{36^{1}x^{16}y^{18}}{29^{1}x^{8}y^{8}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{36^{1}}{29^{1}}x^{16-8}y^{18-8}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{36^{1}}{29^{1}}x^{8}y^{18-8}
Tango 8 mai i 16.
\frac{36^{1}}{29^{1}}x^{8}y^{10}
Tango 8 mai i 18.
\frac{36}{29}x^{8}y^{10}
Whakawehe 36 ki te 29.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{36y^{18}}{29y^{8}}x^{16-8})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{36y^{10}}{29}x^{8})
Mahia ngā tātaitanga.
8\times \frac{36y^{10}}{29}x^{8-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{288y^{10}}{29}x^{7}
Mahia ngā tātaitanga.