Aromātai
\frac{4}{7w^{2}}
Kimi Pārōnaki e ai ki w
-\frac{8}{7w^{3}}
Tohaina
Kua tāruatia ki te papatopenga
\left(36w^{4}\right)^{1}\times \frac{1}{63w^{6}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
36^{1}\left(w^{4}\right)^{1}\times \frac{1}{63}\times \frac{1}{w^{6}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
36^{1}\times \frac{1}{63}\left(w^{4}\right)^{1}\times \frac{1}{w^{6}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
36^{1}\times \frac{1}{63}w^{4}w^{6\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
36^{1}\times \frac{1}{63}w^{4}w^{-6}
Whakareatia 6 ki te -1.
36^{1}\times \frac{1}{63}w^{4-6}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
36^{1}\times \frac{1}{63}w^{-2}
Tāpirihia ngā taupū 4 me -6.
36\times \frac{1}{63}w^{-2}
Hīkina te 36 ki te pū 1.
\frac{4}{7}w^{-2}
Whakareatia 36 ki te \frac{1}{63}.
\frac{36^{1}w^{4}}{63^{1}w^{6}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{36^{1}w^{4-6}}{63^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{36^{1}w^{-2}}{63^{1}}
Tango 6 mai i 4.
\frac{4}{7}w^{-2}
Whakahekea te hautanga \frac{36}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{36}{63}w^{4-6})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{4}{7}w^{-2})
Mahia ngā tātaitanga.
-2\times \frac{4}{7}w^{-2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{8}{7}w^{-3}
Mahia ngā tātaitanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}