Aromātai
-\frac{3}{4}+\frac{9}{2p}
Whakaroha
-\frac{3}{4}+\frac{9}{2p}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(36-p^{2}\right)\times 6m}{4mp\left(12+2p\right)}
Whakawehe \frac{36-p^{2}}{4mp} ki te \frac{12+2p}{6m} mā te whakarea \frac{36-p^{2}}{4mp} ki te tau huripoki o \frac{12+2p}{6m}.
\frac{3\left(-p^{2}+36\right)}{2p\left(2p+12\right)}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{3\left(p-6\right)\left(-p-6\right)}{2^{2}p\left(p+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-3\left(p-6\right)\left(p+6\right)}{2^{2}p\left(p+6\right)}
Unuhia te tohu tōraro i roto o -6-p.
\frac{-3\left(p-6\right)}{2^{2}p}
Me whakakore tahi te p+6 i te taurunga me te tauraro.
\frac{-3p+18}{4p}
Me whakaroha te kīanga.
\frac{\left(36-p^{2}\right)\times 6m}{4mp\left(12+2p\right)}
Whakawehe \frac{36-p^{2}}{4mp} ki te \frac{12+2p}{6m} mā te whakarea \frac{36-p^{2}}{4mp} ki te tau huripoki o \frac{12+2p}{6m}.
\frac{3\left(-p^{2}+36\right)}{2p\left(2p+12\right)}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{3\left(p-6\right)\left(-p-6\right)}{2^{2}p\left(p+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-3\left(p-6\right)\left(p+6\right)}{2^{2}p\left(p+6\right)}
Unuhia te tohu tōraro i roto o -6-p.
\frac{-3\left(p-6\right)}{2^{2}p}
Me whakakore tahi te p+6 i te taurunga me te tauraro.
\frac{-3p+18}{4p}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}