Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(36-p^{2}\right)\times 6m}{4mp\left(12+2p\right)}
Whakawehe \frac{36-p^{2}}{4mp} ki te \frac{12+2p}{6m} mā te whakarea \frac{36-p^{2}}{4mp} ki te tau huripoki o \frac{12+2p}{6m}.
\frac{3\left(-p^{2}+36\right)}{2p\left(2p+12\right)}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{3\left(p-6\right)\left(-p-6\right)}{2^{2}p\left(p+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-3\left(p-6\right)\left(p+6\right)}{2^{2}p\left(p+6\right)}
Unuhia te tohu tōraro i roto o -6-p.
\frac{-3\left(p-6\right)}{2^{2}p}
Me whakakore tahi te p+6 i te taurunga me te tauraro.
\frac{-3p+18}{4p}
Me whakaroha te kīanga.
\frac{\left(36-p^{2}\right)\times 6m}{4mp\left(12+2p\right)}
Whakawehe \frac{36-p^{2}}{4mp} ki te \frac{12+2p}{6m} mā te whakarea \frac{36-p^{2}}{4mp} ki te tau huripoki o \frac{12+2p}{6m}.
\frac{3\left(-p^{2}+36\right)}{2p\left(2p+12\right)}
Me whakakore tahi te 2m i te taurunga me te tauraro.
\frac{3\left(p-6\right)\left(-p-6\right)}{2^{2}p\left(p+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-3\left(p-6\right)\left(p+6\right)}{2^{2}p\left(p+6\right)}
Unuhia te tohu tōraro i roto o -6-p.
\frac{-3\left(p-6\right)}{2^{2}p}
Me whakakore tahi te p+6 i te taurunga me te tauraro.
\frac{-3p+18}{4p}
Me whakaroha te kīanga.