Whakaoti mō x
x=-30
x=36
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x\times 36-\left(5x-30\right)\times 36=x\left(x-6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,6 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5x\left(x-6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-6,x,5.
180x-\left(5x-30\right)\times 36=x\left(x-6\right)
Whakareatia te 5 ki te 36, ka 180.
180x-\left(180x-1080\right)=x\left(x-6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5x-30 ki te 36.
180x-180x+1080=x\left(x-6\right)
Hei kimi i te tauaro o 180x-1080, kimihia te tauaro o ia taurangi.
1080=x\left(x-6\right)
Pahekotia te 180x me -180x, ka 0.
1080=x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-6.
x^{2}-6x=1080
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-6x-1080=0
Tangohia te 1080 mai i ngā taha e rua.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1080\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me -1080 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1080\right)}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+4320}}{2}
Whakareatia -4 ki te -1080.
x=\frac{-\left(-6\right)±\sqrt{4356}}{2}
Tāpiri 36 ki te 4320.
x=\frac{-\left(-6\right)±66}{2}
Tuhia te pūtakerua o te 4356.
x=\frac{6±66}{2}
Ko te tauaro o -6 ko 6.
x=\frac{72}{2}
Nā, me whakaoti te whārite x=\frac{6±66}{2} ina he tāpiri te ±. Tāpiri 6 ki te 66.
x=36
Whakawehe 72 ki te 2.
x=-\frac{60}{2}
Nā, me whakaoti te whārite x=\frac{6±66}{2} ina he tango te ±. Tango 66 mai i 6.
x=-30
Whakawehe -60 ki te 2.
x=36 x=-30
Kua oti te whārite te whakatau.
5x\times 36-\left(5x-30\right)\times 36=x\left(x-6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,6 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5x\left(x-6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-6,x,5.
180x-\left(5x-30\right)\times 36=x\left(x-6\right)
Whakareatia te 5 ki te 36, ka 180.
180x-\left(180x-1080\right)=x\left(x-6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5x-30 ki te 36.
180x-180x+1080=x\left(x-6\right)
Hei kimi i te tauaro o 180x-1080, kimihia te tauaro o ia taurangi.
1080=x\left(x-6\right)
Pahekotia te 180x me -180x, ka 0.
1080=x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-6.
x^{2}-6x=1080
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-6x+\left(-3\right)^{2}=1080+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=1080+9
Pūrua -3.
x^{2}-6x+9=1089
Tāpiri 1080 ki te 9.
\left(x-3\right)^{2}=1089
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1089}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=33 x-3=-33
Whakarūnātia.
x=36 x=-30
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}