Whakaoti mō x
x=-1
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 36 } { x ( x - 12 ) } - \frac { 3 } { x - 12 } = 3
Tohaina
Kua tāruatia ki te papatopenga
36-x\times 3=3x\left(x-12\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,12 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-12\right), arā, te tauraro pātahi he tino iti rawa te kitea o x\left(x-12\right),x-12.
36-x\times 3=3x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-12.
36-x\times 3-3x^{2}=-36x
Tangohia te 3x^{2} mai i ngā taha e rua.
36-x\times 3-3x^{2}+36x=0
Me tāpiri te 36x ki ngā taha e rua.
36-3x-3x^{2}+36x=0
Whakareatia te -1 ki te 3, ka -3.
36+33x-3x^{2}=0
Pahekotia te -3x me 36x, ka 33x.
12+11x-x^{2}=0
Whakawehea ngā taha e rua ki te 3.
-x^{2}+11x+12=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=11 ab=-12=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=12 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(-x^{2}+12x\right)+\left(-x+12\right)
Tuhia anō te -x^{2}+11x+12 hei \left(-x^{2}+12x\right)+\left(-x+12\right).
-x\left(x-12\right)-\left(x-12\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-12\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=-1
Hei kimi otinga whārite, me whakaoti te x-12=0 me te -x-1=0.
x=-1
Tē taea kia ōrite te tāupe x ki 12.
36-x\times 3=3x\left(x-12\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,12 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-12\right), arā, te tauraro pātahi he tino iti rawa te kitea o x\left(x-12\right),x-12.
36-x\times 3=3x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-12.
36-x\times 3-3x^{2}=-36x
Tangohia te 3x^{2} mai i ngā taha e rua.
36-x\times 3-3x^{2}+36x=0
Me tāpiri te 36x ki ngā taha e rua.
36-3x-3x^{2}+36x=0
Whakareatia te -1 ki te 3, ka -3.
36+33x-3x^{2}=0
Pahekotia te -3x me 36x, ka 33x.
-3x^{2}+33x+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-33±\sqrt{33^{2}-4\left(-3\right)\times 36}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 33 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-3\right)\times 36}}{2\left(-3\right)}
Pūrua 33.
x=\frac{-33±\sqrt{1089+12\times 36}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-33±\sqrt{1089+432}}{2\left(-3\right)}
Whakareatia 12 ki te 36.
x=\frac{-33±\sqrt{1521}}{2\left(-3\right)}
Tāpiri 1089 ki te 432.
x=\frac{-33±39}{2\left(-3\right)}
Tuhia te pūtakerua o te 1521.
x=\frac{-33±39}{-6}
Whakareatia 2 ki te -3.
x=\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{-33±39}{-6} ina he tāpiri te ±. Tāpiri -33 ki te 39.
x=-1
Whakawehe 6 ki te -6.
x=-\frac{72}{-6}
Nā, me whakaoti te whārite x=\frac{-33±39}{-6} ina he tango te ±. Tango 39 mai i -33.
x=12
Whakawehe -72 ki te -6.
x=-1 x=12
Kua oti te whārite te whakatau.
x=-1
Tē taea kia ōrite te tāupe x ki 12.
36-x\times 3=3x\left(x-12\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,12 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-12\right), arā, te tauraro pātahi he tino iti rawa te kitea o x\left(x-12\right),x-12.
36-x\times 3=3x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-12.
36-x\times 3-3x^{2}=-36x
Tangohia te 3x^{2} mai i ngā taha e rua.
36-x\times 3-3x^{2}+36x=0
Me tāpiri te 36x ki ngā taha e rua.
-x\times 3-3x^{2}+36x=-36
Tangohia te 36 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-3x-3x^{2}+36x=-36
Whakareatia te -1 ki te 3, ka -3.
33x-3x^{2}=-36
Pahekotia te -3x me 36x, ka 33x.
-3x^{2}+33x=-36
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+33x}{-3}=-\frac{36}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{33}{-3}x=-\frac{36}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-11x=-\frac{36}{-3}
Whakawehe 33 ki te -3.
x^{2}-11x=12
Whakawehe -36 ki te -3.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=12+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-11x+\frac{121}{4}=12+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-11x+\frac{121}{4}=\frac{169}{4}
Tāpiri 12 ki te \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{169}{4}
Tauwehea te x^{2}-11x+\frac{121}{4}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{2}=\frac{13}{2} x-\frac{11}{2}=-\frac{13}{2}
Whakarūnātia.
x=12 x=-1
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.
x=-1
Tē taea kia ōrite te tāupe x ki 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}