Aromātai
\frac{3\sqrt{3}}{4}-\frac{75}{8}\approx -8.075961894
Tauwehe
\frac{3 {(2 \sqrt{3} - 25)}}{8} = -8.075961894323342
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{36}{5}}{-\frac{6}{5}}+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Tātaihia te -\frac{5}{6} mā te pū o -1, kia riro ko -\frac{6}{5}.
\frac{36}{5}\left(-\frac{5}{6}\right)+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Whakawehe \frac{36}{5} ki te -\frac{6}{5} mā te whakarea \frac{36}{5} ki te tau huripoki o -\frac{6}{5}.
-6+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Whakareatia te \frac{36}{5} ki te -\frac{5}{6}, ka -6.
-6+\frac{\sqrt{27}}{\sqrt{16}}-\frac{1}{8}-\frac{13}{4}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{27}{16}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{27}}{\sqrt{16}}.
-6+\frac{3\sqrt{3}}{\sqrt{16}}-\frac{1}{8}-\frac{13}{4}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
-6+\frac{3\sqrt{3}}{4}-\frac{1}{8}-\frac{13}{4}
Tātaitia te pūtakerua o 16 kia tae ki 4.
-\frac{49}{8}+\frac{3\sqrt{3}}{4}-\frac{13}{4}
Tangohia te \frac{1}{8} i te -6, ka -\frac{49}{8}.
-\frac{75}{8}+\frac{3\sqrt{3}}{4}
Tangohia te \frac{13}{4} i te -\frac{49}{8}, ka -\frac{75}{8}.
-\frac{75}{8}+\frac{2\times 3\sqrt{3}}{8}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 8 me 4 ko 8. Whakareatia \frac{3\sqrt{3}}{4} ki te \frac{2}{2}.
\frac{-75+2\times 3\sqrt{3}}{8}
Tā te mea he rite te tauraro o -\frac{75}{8} me \frac{2\times 3\sqrt{3}}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-75+6\sqrt{3}}{8}
Mahia ngā whakarea i roto o -75+2\times 3\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}