Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{27}{\sqrt{7}-2}
Tangohia te 8 i te 35, ka 27.
\frac{27\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Whakangāwaritia te tauraro o \frac{27}{\sqrt{7}-2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}+2.
\frac{27\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}
Whakaarohia te \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{27\left(\sqrt{7}+2\right)}{7-4}
Pūrua \sqrt{7}. Pūrua 2.
\frac{27\left(\sqrt{7}+2\right)}{3}
Tangohia te 4 i te 7, ka 3.
9\left(\sqrt{7}+2\right)
Whakawehea te 27\left(\sqrt{7}+2\right) ki te 3, kia riro ko 9\left(\sqrt{7}+2\right).
9\sqrt{7}+18
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te \sqrt{7}+2.