Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

34x^{2}-24x-1=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right).
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 34\left(-1\right)}}{2\times 34}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 34 mō a, -24 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 34\left(-1\right)}}{2\times 34}
Pūrua -24.
x=\frac{-\left(-24\right)±\sqrt{576-136\left(-1\right)}}{2\times 34}
Whakareatia -4 ki te 34.
x=\frac{-\left(-24\right)±\sqrt{576+136}}{2\times 34}
Whakareatia -136 ki te -1.
x=\frac{-\left(-24\right)±\sqrt{712}}{2\times 34}
Tāpiri 576 ki te 136.
x=\frac{-\left(-24\right)±2\sqrt{178}}{2\times 34}
Tuhia te pūtakerua o te 712.
x=\frac{24±2\sqrt{178}}{2\times 34}
Ko te tauaro o -24 ko 24.
x=\frac{24±2\sqrt{178}}{68}
Whakareatia 2 ki te 34.
x=\frac{2\sqrt{178}+24}{68}
Nā, me whakaoti te whārite x=\frac{24±2\sqrt{178}}{68} ina he tāpiri te ±. Tāpiri 24 ki te 2\sqrt{178}.
x=\frac{\sqrt{178}}{34}+\frac{6}{17}
Whakawehe 24+2\sqrt{178} ki te 68.
x=\frac{24-2\sqrt{178}}{68}
Nā, me whakaoti te whārite x=\frac{24±2\sqrt{178}}{68} ina he tango te ±. Tango 2\sqrt{178} mai i 24.
x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
Whakawehe 24-2\sqrt{178} ki te 68.
x=\frac{\sqrt{178}}{34}+\frac{6}{17} x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
Kua oti te whārite te whakatau.
34x^{2}-24x-1=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right).
34x^{2}-24x=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{34x^{2}-24x}{34}=\frac{1}{34}
Whakawehea ngā taha e rua ki te 34.
x^{2}+\left(-\frac{24}{34}\right)x=\frac{1}{34}
Mā te whakawehe ki te 34 ka wetekia te whakareanga ki te 34.
x^{2}-\frac{12}{17}x=\frac{1}{34}
Whakahekea te hautanga \frac{-24}{34} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{12}{17}x+\left(-\frac{6}{17}\right)^{2}=\frac{1}{34}+\left(-\frac{6}{17}\right)^{2}
Whakawehea te -\frac{12}{17}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{6}{17}. Nā, tāpiria te pūrua o te -\frac{6}{17} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{12}{17}x+\frac{36}{289}=\frac{1}{34}+\frac{36}{289}
Pūruatia -\frac{6}{17} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{12}{17}x+\frac{36}{289}=\frac{89}{578}
Tāpiri \frac{1}{34} ki te \frac{36}{289} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{6}{17}\right)^{2}=\frac{89}{578}
Tauwehea x^{2}-\frac{12}{17}x+\frac{36}{289}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{17}\right)^{2}}=\sqrt{\frac{89}{578}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{6}{17}=\frac{\sqrt{178}}{34} x-\frac{6}{17}=-\frac{\sqrt{178}}{34}
Whakarūnātia.
x=\frac{\sqrt{178}}{34}+\frac{6}{17} x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
Me tāpiri \frac{6}{17} ki ngā taha e rua o te whārite.