Whakaoti mō n
n=1
Tohaina
Kua tāruatia ki te papatopenga
32n=8\times 4n^{2}
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 24n, arā, te tauraro pātahi he tino iti rawa te kitea o 24n,3n.
32n=32n^{2}
Whakareatia te 8 ki te 4, ka 32.
32n-32n^{2}=0
Tangohia te 32n^{2} mai i ngā taha e rua.
n\left(32-32n\right)=0
Tauwehea te n.
n=0 n=1
Hei kimi otinga whārite, me whakaoti te n=0 me te 32-32n=0.
n=1
Tē taea kia ōrite te tāupe n ki 0.
32n=8\times 4n^{2}
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 24n, arā, te tauraro pātahi he tino iti rawa te kitea o 24n,3n.
32n=32n^{2}
Whakareatia te 8 ki te 4, ka 32.
32n-32n^{2}=0
Tangohia te 32n^{2} mai i ngā taha e rua.
-32n^{2}+32n=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-32±\sqrt{32^{2}}}{2\left(-32\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -32 mō a, 32 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-32±32}{2\left(-32\right)}
Tuhia te pūtakerua o te 32^{2}.
n=\frac{-32±32}{-64}
Whakareatia 2 ki te -32.
n=\frac{0}{-64}
Nā, me whakaoti te whārite n=\frac{-32±32}{-64} ina he tāpiri te ±. Tāpiri -32 ki te 32.
n=0
Whakawehe 0 ki te -64.
n=-\frac{64}{-64}
Nā, me whakaoti te whārite n=\frac{-32±32}{-64} ina he tango te ±. Tango 32 mai i -32.
n=1
Whakawehe -64 ki te -64.
n=0 n=1
Kua oti te whārite te whakatau.
n=1
Tē taea kia ōrite te tāupe n ki 0.
32n=8\times 4n^{2}
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 24n, arā, te tauraro pātahi he tino iti rawa te kitea o 24n,3n.
32n=32n^{2}
Whakareatia te 8 ki te 4, ka 32.
32n-32n^{2}=0
Tangohia te 32n^{2} mai i ngā taha e rua.
-32n^{2}+32n=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-32n^{2}+32n}{-32}=\frac{0}{-32}
Whakawehea ngā taha e rua ki te -32.
n^{2}+\frac{32}{-32}n=\frac{0}{-32}
Mā te whakawehe ki te -32 ka wetekia te whakareanga ki te -32.
n^{2}-n=\frac{0}{-32}
Whakawehe 32 ki te -32.
n^{2}-n=0
Whakawehe 0 ki te -32.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-n+\frac{1}{4}=\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(n-\frac{1}{2}\right)^{2}=\frac{1}{4}
Tauwehea n^{2}-n+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{1}{2}=\frac{1}{2} n-\frac{1}{2}=-\frac{1}{2}
Whakarūnātia.
n=1 n=0
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
n=1
Tē taea kia ōrite te tāupe n ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}