Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{32^{1}n^{2}}{24^{1}n^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{32^{1}n^{2-1}}{24^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{32^{1}n^{1}}{24^{1}}
Tango 1 mai i 2.
\frac{4}{3}n^{1}
Whakahekea te hautanga \frac{32}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{4}{3}n
Mō tētahi kupu t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{32}{24}n^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{4}{3}n^{1})
Mahia ngā tātaitanga.
\frac{4}{3}n^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{4}{3}n^{0}
Mahia ngā tātaitanga.
\frac{4}{3}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{4}{3}
Mō tētahi kupu t, t\times 1=t me 1t=t.