Aromātai
\frac{4n}{3}
Kimi Pārōnaki e ai ki n
\frac{4}{3} = 1\frac{1}{3} = 1.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{32^{1}n^{2}}{24^{1}n^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{32^{1}n^{2-1}}{24^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{32^{1}n^{1}}{24^{1}}
Tango 1 mai i 2.
\frac{4}{3}n^{1}
Whakahekea te hautanga \frac{32}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{4}{3}n
Mō tētahi kupu t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{32}{24}n^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{4}{3}n^{1})
Mahia ngā tātaitanga.
\frac{4}{3}n^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{4}{3}n^{0}
Mahia ngā tātaitanga.
\frac{4}{3}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{4}{3}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}