Aromātai
0
Tauwehe
0
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 314 } { 64 } ( 03937 ^ { 4 } - 0324 ^ { 4 } ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{157}{32}\left(0\times 3937^{4}-0\times 324^{4}\right)
Whakahekea te hautanga \frac{314}{64} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{157}{32}\left(0\times 240249039000961-0\times 324^{4}\right)
Tātaihia te 3937 mā te pū o 4, kia riro ko 240249039000961.
\frac{157}{32}\left(0-0\times 324^{4}\right)
Whakareatia te 0 ki te 240249039000961, ka 0.
\frac{157}{32}\left(0-0\times 11019960576\right)
Tātaihia te 324 mā te pū o 4, kia riro ko 11019960576.
\frac{157}{32}\left(0-0\right)
Whakareatia te 0 ki te 11019960576, ka 0.
\frac{157}{32}\times 0
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0
Whakareatia te \frac{157}{32} ki te 0, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}