Whakaoti mō x
x>120
Graph
Tohaina
Kua tāruatia ki te papatopenga
30x+12\times 600>15\left(x+600\right)
Whakareatia ngā taha e rua o te whārite ki te 100. I te mea he tōrunga te 100, kāore e huri te ahunga koreōrite.
30x+7200>15\left(x+600\right)
Whakareatia te 12 ki te 600, ka 7200.
30x+7200>15x+9000
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te x+600.
30x+7200-15x>9000
Tangohia te 15x mai i ngā taha e rua.
15x+7200>9000
Pahekotia te 30x me -15x, ka 15x.
15x>9000-7200
Tangohia te 7200 mai i ngā taha e rua.
15x>1800
Tangohia te 7200 i te 9000, ka 1800.
x>\frac{1800}{15}
Whakawehea ngā taha e rua ki te 15. I te mea he tōrunga te 15, kāore e huri te ahunga koreōrite.
x>120
Whakawehea te 1800 ki te 15, kia riro ko 120.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}