Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{30^{1}x^{4}y^{3}}{\left(-6\right)^{1}x^{7}y^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{30^{1}}{\left(-6\right)^{1}}x^{4-7}y^{3-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{30^{1}}{\left(-6\right)^{1}}x^{-3}y^{3-1}
Tango 7 mai i 4.
\frac{30^{1}}{\left(-6\right)^{1}}\times \frac{1}{x^{3}}y^{2}
Tango 1 mai i 3.
-5\times \frac{1}{x^{3}}y^{2}
Whakawehe 30 ki te -6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{30y^{3}}{-6y}x^{4-7})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-5y^{2}\right)x^{-3})
Mahia ngā tātaitanga.
-3\left(-5y^{2}\right)x^{-3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
15y^{2}x^{-4}
Mahia ngā tātaitanga.