Whakaoti mō x
x = -\frac{14}{3} = -4\frac{2}{3} \approx -4.666666667
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
30-\left(x+3\right)x=\left(x+2\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+5x+6,x+2,x+3.
30-\left(x^{2}+3x\right)=\left(x+2\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te x.
30-x^{2}-3x=\left(x+2\right)\left(2x+1\right)
Hei kimi i te tauaro o x^{2}+3x, kimihia te tauaro o ia taurangi.
30-x^{2}-3x=2x^{2}+5x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te 2x+1 ka whakakotahi i ngā kupu rite.
30-x^{2}-3x-2x^{2}=5x+2
Tangohia te 2x^{2} mai i ngā taha e rua.
30-3x^{2}-3x=5x+2
Pahekotia te -x^{2} me -2x^{2}, ka -3x^{2}.
30-3x^{2}-3x-5x=2
Tangohia te 5x mai i ngā taha e rua.
30-3x^{2}-8x=2
Pahekotia te -3x me -5x, ka -8x.
30-3x^{2}-8x-2=0
Tangohia te 2 mai i ngā taha e rua.
28-3x^{2}-8x=0
Tangohia te 2 i te 30, ka 28.
-3x^{2}-8x+28=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=-3\times 28=-84
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-84 2,-42 3,-28 4,-21 6,-14 7,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -84.
1-84=-83 2-42=-40 3-28=-25 4-21=-17 6-14=-8 7-12=-5
Tātaihia te tapeke mō ia takirua.
a=6 b=-14
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(-3x^{2}+6x\right)+\left(-14x+28\right)
Tuhia anō te -3x^{2}-8x+28 hei \left(-3x^{2}+6x\right)+\left(-14x+28\right).
3x\left(-x+2\right)+14\left(-x+2\right)
Tauwehea te 3x i te tuatahi me te 14 i te rōpū tuarua.
\left(-x+2\right)\left(3x+14\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{14}{3}
Hei kimi otinga whārite, me whakaoti te -x+2=0 me te 3x+14=0.
30-\left(x+3\right)x=\left(x+2\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+5x+6,x+2,x+3.
30-\left(x^{2}+3x\right)=\left(x+2\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te x.
30-x^{2}-3x=\left(x+2\right)\left(2x+1\right)
Hei kimi i te tauaro o x^{2}+3x, kimihia te tauaro o ia taurangi.
30-x^{2}-3x=2x^{2}+5x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te 2x+1 ka whakakotahi i ngā kupu rite.
30-x^{2}-3x-2x^{2}=5x+2
Tangohia te 2x^{2} mai i ngā taha e rua.
30-3x^{2}-3x=5x+2
Pahekotia te -x^{2} me -2x^{2}, ka -3x^{2}.
30-3x^{2}-3x-5x=2
Tangohia te 5x mai i ngā taha e rua.
30-3x^{2}-8x=2
Pahekotia te -3x me -5x, ka -8x.
30-3x^{2}-8x-2=0
Tangohia te 2 mai i ngā taha e rua.
28-3x^{2}-8x=0
Tangohia te 2 i te 30, ka 28.
-3x^{2}-8x+28=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-3\right)\times 28}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -8 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-3\right)\times 28}}{2\left(-3\right)}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+12\times 28}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-8\right)±\sqrt{64+336}}{2\left(-3\right)}
Whakareatia 12 ki te 28.
x=\frac{-\left(-8\right)±\sqrt{400}}{2\left(-3\right)}
Tāpiri 64 ki te 336.
x=\frac{-\left(-8\right)±20}{2\left(-3\right)}
Tuhia te pūtakerua o te 400.
x=\frac{8±20}{2\left(-3\right)}
Ko te tauaro o -8 ko 8.
x=\frac{8±20}{-6}
Whakareatia 2 ki te -3.
x=\frac{28}{-6}
Nā, me whakaoti te whārite x=\frac{8±20}{-6} ina he tāpiri te ±. Tāpiri 8 ki te 20.
x=-\frac{14}{3}
Whakahekea te hautanga \frac{28}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{12}{-6}
Nā, me whakaoti te whārite x=\frac{8±20}{-6} ina he tango te ±. Tango 20 mai i 8.
x=2
Whakawehe -12 ki te -6.
x=-\frac{14}{3} x=2
Kua oti te whārite te whakatau.
30-\left(x+3\right)x=\left(x+2\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+5x+6,x+2,x+3.
30-\left(x^{2}+3x\right)=\left(x+2\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te x.
30-x^{2}-3x=\left(x+2\right)\left(2x+1\right)
Hei kimi i te tauaro o x^{2}+3x, kimihia te tauaro o ia taurangi.
30-x^{2}-3x=2x^{2}+5x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te 2x+1 ka whakakotahi i ngā kupu rite.
30-x^{2}-3x-2x^{2}=5x+2
Tangohia te 2x^{2} mai i ngā taha e rua.
30-3x^{2}-3x=5x+2
Pahekotia te -x^{2} me -2x^{2}, ka -3x^{2}.
30-3x^{2}-3x-5x=2
Tangohia te 5x mai i ngā taha e rua.
30-3x^{2}-8x=2
Pahekotia te -3x me -5x, ka -8x.
-3x^{2}-8x=2-30
Tangohia te 30 mai i ngā taha e rua.
-3x^{2}-8x=-28
Tangohia te 30 i te 2, ka -28.
\frac{-3x^{2}-8x}{-3}=-\frac{28}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{8}{-3}\right)x=-\frac{28}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{8}{3}x=-\frac{28}{-3}
Whakawehe -8 ki te -3.
x^{2}+\frac{8}{3}x=\frac{28}{3}
Whakawehe -28 ki te -3.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{28}{3}+\left(\frac{4}{3}\right)^{2}
Whakawehea te \frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{3}. Nā, tāpiria te pūrua o te \frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{28}{3}+\frac{16}{9}
Pūruatia \frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{100}{9}
Tāpiri \frac{28}{3} ki te \frac{16}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{4}{3}\right)^{2}=\frac{100}{9}
Tauwehea x^{2}+\frac{8}{3}x+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{4}{3}=\frac{10}{3} x+\frac{4}{3}=-\frac{10}{3}
Whakarūnātia.
x=2 x=-\frac{14}{3}
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}