Whakaoti mō F
F=\frac{2\left(r+30\right)}{3}
r\neq -30
Whakaoti mō r
r=\frac{3\left(F-20\right)}{2}
F\neq 0
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 30 \times F } { 30 + r } = 20 _ { \Omega }
Tohaina
Kua tāruatia ki te papatopenga
30F=20\left(r+30\right)
Whakareatia ngā taha e rua o te whārite ki te r+30.
30F=20r+600
Whakamahia te āhuatanga tohatoha hei whakarea te 20 ki te r+30.
\frac{30F}{30}=\frac{20r+600}{30}
Whakawehea ngā taha e rua ki te 30.
F=\frac{20r+600}{30}
Mā te whakawehe ki te 30 ka wetekia te whakareanga ki te 30.
F=\frac{2r}{3}+20
Whakawehe 600+20r ki te 30.
30F=20\left(r+30\right)
Tē taea kia ōrite te tāupe r ki -30 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te r+30.
30F=20r+600
Whakamahia te āhuatanga tohatoha hei whakarea te 20 ki te r+30.
20r+600=30F
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
20r=30F-600
Tangohia te 600 mai i ngā taha e rua.
\frac{20r}{20}=\frac{30F-600}{20}
Whakawehea ngā taha e rua ki te 20.
r=\frac{30F-600}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
r=\frac{3F}{2}-30
Whakawehe -600+30F ki te 20.
r=\frac{3F}{2}-30\text{, }r\neq -30
Tē taea kia ōrite te tāupe r ki -30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}