Aromātai
-\frac{1884}{69376430141}\approx -0.000000027
Tauwehe
-\frac{1884}{69376430141} = -2.7156196941396034 \times 10^{-8}
Tohaina
Kua tāruatia ki te papatopenga
\frac{18840\times 10^{-5}}{367-254\times 27315-141\times 10^{-4}}
Whakareatia te 30 ki te 628, ka 18840.
\frac{18840\times \frac{1}{100000}}{367-254\times 27315-141\times 10^{-4}}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{\frac{471}{2500}}{367-254\times 27315-141\times 10^{-4}}
Whakareatia te 18840 ki te \frac{1}{100000}, ka \frac{471}{2500}.
\frac{\frac{471}{2500}}{367-6938010-141\times 10^{-4}}
Whakareatia te 254 ki te 27315, ka 6938010.
\frac{\frac{471}{2500}}{-6937643-141\times 10^{-4}}
Tangohia te 6938010 i te 367, ka -6937643.
\frac{\frac{471}{2500}}{-6937643-141\times \frac{1}{10000}}
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
\frac{\frac{471}{2500}}{-6937643-\frac{141}{10000}}
Whakareatia te 141 ki te \frac{1}{10000}, ka \frac{141}{10000}.
\frac{\frac{471}{2500}}{-\frac{69376430141}{10000}}
Tangohia te \frac{141}{10000} i te -6937643, ka -\frac{69376430141}{10000}.
\frac{471}{2500}\left(-\frac{10000}{69376430141}\right)
Whakawehe \frac{471}{2500} ki te -\frac{69376430141}{10000} mā te whakarea \frac{471}{2500} ki te tau huripoki o -\frac{69376430141}{10000}.
-\frac{1884}{69376430141}
Whakareatia te \frac{471}{2500} ki te -\frac{10000}{69376430141}, ka -\frac{1884}{69376430141}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}