Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3z^{1}\right)^{1}\times \frac{1}{12z^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
3^{1}\left(z^{1}\right)^{1}\times \frac{1}{12}\times \frac{1}{z^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
3^{1}\times \frac{1}{12}\left(z^{1}\right)^{1}\times \frac{1}{z^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
3^{1}\times \frac{1}{12}z^{1}z^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
3^{1}\times \frac{1}{12}z^{1}z^{-2}
Whakareatia 2 ki te -1.
3^{1}\times \frac{1}{12}z^{1-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
3^{1}\times \frac{1}{12}\times \frac{1}{z}
Tāpirihia ngā taupū 1 me -2.
3\times \frac{1}{12}\times \frac{1}{z}
Hīkina te 3 ki te pū 1.
\frac{1}{4}\times \frac{1}{z}
Whakareatia 3 ki te \frac{1}{12}.
\frac{3^{1}z^{1}}{12^{1}z^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{3^{1}z^{1-2}}{12^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{3^{1}\times \frac{1}{z}}{12^{1}}
Tango 2 mai i 1.
\frac{1}{4}\times \frac{1}{z}
Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{3}{12}z^{1-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{1}{4}\times \frac{1}{z})
Mahia ngā tātaitanga.
-\frac{1}{4}z^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{1}{4}z^{-2}
Mahia ngā tātaitanga.