Aromātai
\frac{23y-29}{10\left(y-3\right)}
Whakaroha
\frac{23y-29}{10\left(y-3\right)}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 3 y - 5 } { 2 y - 6 } + \frac { 4 y - 2 } { 5 y - 15 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{3y-5}{2\left(y-3\right)}+\frac{4y-2}{5\left(y-3\right)}
Tauwehea te 2y-6. Tauwehea te 5y-15.
\frac{5\left(3y-5\right)}{10\left(y-3\right)}+\frac{2\left(4y-2\right)}{10\left(y-3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2\left(y-3\right) me 5\left(y-3\right) ko 10\left(y-3\right). Whakareatia \frac{3y-5}{2\left(y-3\right)} ki te \frac{5}{5}. Whakareatia \frac{4y-2}{5\left(y-3\right)} ki te \frac{2}{2}.
\frac{5\left(3y-5\right)+2\left(4y-2\right)}{10\left(y-3\right)}
Tā te mea he rite te tauraro o \frac{5\left(3y-5\right)}{10\left(y-3\right)} me \frac{2\left(4y-2\right)}{10\left(y-3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15y-25+8y-4}{10\left(y-3\right)}
Mahia ngā whakarea i roto o 5\left(3y-5\right)+2\left(4y-2\right).
\frac{23y-29}{10\left(y-3\right)}
Whakakotahitia ngā kupu rite i 15y-25+8y-4.
\frac{23y-29}{10y-30}
Whakarohaina te 10\left(y-3\right).
\frac{3y-5}{2\left(y-3\right)}+\frac{4y-2}{5\left(y-3\right)}
Tauwehea te 2y-6. Tauwehea te 5y-15.
\frac{5\left(3y-5\right)}{10\left(y-3\right)}+\frac{2\left(4y-2\right)}{10\left(y-3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2\left(y-3\right) me 5\left(y-3\right) ko 10\left(y-3\right). Whakareatia \frac{3y-5}{2\left(y-3\right)} ki te \frac{5}{5}. Whakareatia \frac{4y-2}{5\left(y-3\right)} ki te \frac{2}{2}.
\frac{5\left(3y-5\right)+2\left(4y-2\right)}{10\left(y-3\right)}
Tā te mea he rite te tauraro o \frac{5\left(3y-5\right)}{10\left(y-3\right)} me \frac{2\left(4y-2\right)}{10\left(y-3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15y-25+8y-4}{10\left(y-3\right)}
Mahia ngā whakarea i roto o 5\left(3y-5\right)+2\left(4y-2\right).
\frac{23y-29}{10\left(y-3\right)}
Whakakotahitia ngā kupu rite i 15y-25+8y-4.
\frac{23y-29}{10y-30}
Whakarohaina te 10\left(y-3\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}