Whakaoti mō y
y=-\frac{1}{3}\approx -0.333333333
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{5}y^{2}-\frac{2}{5}=y
Whakawehea ia wā o 3y^{2}-2 ki te 5, kia riro ko \frac{3}{5}y^{2}-\frac{2}{5}.
\frac{3}{5}y^{2}-\frac{2}{5}-y=0
Tangohia te y mai i ngā taha e rua.
\frac{3}{5}y^{2}-y-\frac{2}{5}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{5}\left(-\frac{2}{5}\right)}}{2\times \frac{3}{5}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{3}{5} mō a, -1 mō b, me -\frac{2}{5} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±\sqrt{1-\frac{12}{5}\left(-\frac{2}{5}\right)}}{2\times \frac{3}{5}}
Whakareatia -4 ki te \frac{3}{5}.
y=\frac{-\left(-1\right)±\sqrt{1+\frac{24}{25}}}{2\times \frac{3}{5}}
Whakareatia -\frac{12}{5} ki te -\frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\left(-1\right)±\sqrt{\frac{49}{25}}}{2\times \frac{3}{5}}
Tāpiri 1 ki te \frac{24}{25}.
y=\frac{-\left(-1\right)±\frac{7}{5}}{2\times \frac{3}{5}}
Tuhia te pūtakerua o te \frac{49}{25}.
y=\frac{1±\frac{7}{5}}{2\times \frac{3}{5}}
Ko te tauaro o -1 ko 1.
y=\frac{1±\frac{7}{5}}{\frac{6}{5}}
Whakareatia 2 ki te \frac{3}{5}.
y=\frac{\frac{12}{5}}{\frac{6}{5}}
Nā, me whakaoti te whārite y=\frac{1±\frac{7}{5}}{\frac{6}{5}} ina he tāpiri te ±. Tāpiri 1 ki te \frac{7}{5}.
y=2
Whakawehe \frac{12}{5} ki te \frac{6}{5} mā te whakarea \frac{12}{5} ki te tau huripoki o \frac{6}{5}.
y=-\frac{\frac{2}{5}}{\frac{6}{5}}
Nā, me whakaoti te whārite y=\frac{1±\frac{7}{5}}{\frac{6}{5}} ina he tango te ±. Tango \frac{7}{5} mai i 1.
y=-\frac{1}{3}
Whakawehe -\frac{2}{5} ki te \frac{6}{5} mā te whakarea -\frac{2}{5} ki te tau huripoki o \frac{6}{5}.
y=2 y=-\frac{1}{3}
Kua oti te whārite te whakatau.
\frac{3}{5}y^{2}-\frac{2}{5}=y
Whakawehea ia wā o 3y^{2}-2 ki te 5, kia riro ko \frac{3}{5}y^{2}-\frac{2}{5}.
\frac{3}{5}y^{2}-\frac{2}{5}-y=0
Tangohia te y mai i ngā taha e rua.
\frac{3}{5}y^{2}-y=\frac{2}{5}
Me tāpiri te \frac{2}{5} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\frac{3}{5}y^{2}-y}{\frac{3}{5}}=\frac{\frac{2}{5}}{\frac{3}{5}}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y^{2}+\left(-\frac{1}{\frac{3}{5}}\right)y=\frac{\frac{2}{5}}{\frac{3}{5}}
Mā te whakawehe ki te \frac{3}{5} ka wetekia te whakareanga ki te \frac{3}{5}.
y^{2}-\frac{5}{3}y=\frac{\frac{2}{5}}{\frac{3}{5}}
Whakawehe -1 ki te \frac{3}{5} mā te whakarea -1 ki te tau huripoki o \frac{3}{5}.
y^{2}-\frac{5}{3}y=\frac{2}{3}
Whakawehe \frac{2}{5} ki te \frac{3}{5} mā te whakarea \frac{2}{5} ki te tau huripoki o \frac{3}{5}.
y^{2}-\frac{5}{3}y+\left(-\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{6}\right)^{2}
Whakawehea te -\frac{5}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{6}. Nā, tāpiria te pūrua o te -\frac{5}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{5}{3}y+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
Pūruatia -\frac{5}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{5}{3}y+\frac{25}{36}=\frac{49}{36}
Tāpiri \frac{2}{3} ki te \frac{25}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{5}{6}\right)^{2}=\frac{49}{36}
Tauwehea y^{2}-\frac{5}{3}y+\frac{25}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{5}{6}=\frac{7}{6} y-\frac{5}{6}=-\frac{7}{6}
Whakarūnātia.
y=2 y=-\frac{1}{3}
Me tāpiri \frac{5}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}