Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3y^{2}-12=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y^{2}-4=0
Whakawehea ngā taha e rua ki te 3.
\left(y-2\right)\left(y+2\right)=0
Whakaarohia te y^{2}-4. Tuhia anō te y^{2}-4 hei y^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=2 y=-2
Hei kimi otinga whārite, me whakaoti te y-2=0 me te y+2=0.
3y^{2}-12=0
Whakareatia ngā taha e rua o te whārite ki te 2.
3y^{2}=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}=\frac{12}{3}
Whakawehea ngā taha e rua ki te 3.
y^{2}=4
Whakawehea te 12 ki te 3, kia riro ko 4.
y=2 y=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3y^{2}-12=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y=\frac{0±\sqrt{0^{2}-4\times 3\left(-12\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 3\left(-12\right)}}{2\times 3}
Pūrua 0.
y=\frac{0±\sqrt{-12\left(-12\right)}}{2\times 3}
Whakareatia -4 ki te 3.
y=\frac{0±\sqrt{144}}{2\times 3}
Whakareatia -12 ki te -12.
y=\frac{0±12}{2\times 3}
Tuhia te pūtakerua o te 144.
y=\frac{0±12}{6}
Whakareatia 2 ki te 3.
y=2
Nā, me whakaoti te whārite y=\frac{0±12}{6} ina he tāpiri te ±. Whakawehe 12 ki te 6.
y=-2
Nā, me whakaoti te whārite y=\frac{0±12}{6} ina he tango te ±. Whakawehe -12 ki te 6.
y=2 y=-2
Kua oti te whārite te whakatau.