Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x\left(-y+3\right)}{4xy}\times \frac{4y+12}{9-y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3x-xy}{4xy}.
\frac{-y+3}{4y}\times \frac{4y+12}{9-y^{2}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-y+3}{4y}\times \frac{4\left(y+3\right)}{\left(y-3\right)\left(-y-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{4y+12}{9-y^{2}}.
\frac{-y+3}{4y}\times \frac{-4\left(-y-3\right)}{\left(y-3\right)\left(-y-3\right)}
Unuhia te tohu tōraro i roto o 3+y.
\frac{-y+3}{4y}\times \frac{-4}{y-3}
Me whakakore tahi te -y-3 i te taurunga me te tauraro.
\frac{\left(-y+3\right)\left(-4\right)}{4y\left(y-3\right)}
Me whakarea te \frac{-y+3}{4y} ki te \frac{-4}{y-3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-4\left(-1\right)\left(y-3\right)}{4y\left(y-3\right)}
Unuhia te tohu tōraro i roto o -y+3.
\frac{-\left(-1\right)}{y}
Me whakakore tahi te 4\left(y-3\right) i te taurunga me te tauraro.
\frac{1}{y}
Whakareatia te -1 ki te -1, ka 1.
\frac{x\left(-y+3\right)}{4xy}\times \frac{4y+12}{9-y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3x-xy}{4xy}.
\frac{-y+3}{4y}\times \frac{4y+12}{9-y^{2}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-y+3}{4y}\times \frac{4\left(y+3\right)}{\left(y-3\right)\left(-y-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{4y+12}{9-y^{2}}.
\frac{-y+3}{4y}\times \frac{-4\left(-y-3\right)}{\left(y-3\right)\left(-y-3\right)}
Unuhia te tohu tōraro i roto o 3+y.
\frac{-y+3}{4y}\times \frac{-4}{y-3}
Me whakakore tahi te -y-3 i te taurunga me te tauraro.
\frac{\left(-y+3\right)\left(-4\right)}{4y\left(y-3\right)}
Me whakarea te \frac{-y+3}{4y} ki te \frac{-4}{y-3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-4\left(-1\right)\left(y-3\right)}{4y\left(y-3\right)}
Unuhia te tohu tōraro i roto o -y+3.
\frac{-\left(-1\right)}{y}
Me whakakore tahi te 4\left(y-3\right) i te taurunga me te tauraro.
\frac{1}{y}
Whakareatia te -1 ki te -1, ka 1.