Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x+5.
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te 3x-8 ka whakakotahi i ngā kupu rite.
3x^{2}+7x-40=5x^{2}-12x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te 5x-2 ka whakakotahi i ngā kupu rite.
3x^{2}+7x-40-5x^{2}=-12x+4
Tangohia te 5x^{2} mai i ngā taha e rua.
-2x^{2}+7x-40=-12x+4
Pahekotia te 3x^{2} me -5x^{2}, ka -2x^{2}.
-2x^{2}+7x-40+12x=4
Me tāpiri te 12x ki ngā taha e rua.
-2x^{2}+19x-40=4
Pahekotia te 7x me 12x, ka 19x.
-2x^{2}+19x-40-4=0
Tangohia te 4 mai i ngā taha e rua.
-2x^{2}+19x-44=0
Tangohia te 4 i te -40, ka -44.
x=\frac{-19±\sqrt{19^{2}-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 19 mō b, me -44 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
Pūrua 19.
x=\frac{-19±\sqrt{361+8\left(-44\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-19±\sqrt{361-352}}{2\left(-2\right)}
Whakareatia 8 ki te -44.
x=\frac{-19±\sqrt{9}}{2\left(-2\right)}
Tāpiri 361 ki te -352.
x=\frac{-19±3}{2\left(-2\right)}
Tuhia te pūtakerua o te 9.
x=\frac{-19±3}{-4}
Whakareatia 2 ki te -2.
x=-\frac{16}{-4}
Nā, me whakaoti te whārite x=\frac{-19±3}{-4} ina he tāpiri te ±. Tāpiri -19 ki te 3.
x=4
Whakawehe -16 ki te -4.
x=-\frac{22}{-4}
Nā, me whakaoti te whārite x=\frac{-19±3}{-4} ina he tango te ±. Tango 3 mai i -19.
x=\frac{11}{2}
Whakahekea te hautanga \frac{-22}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=4 x=\frac{11}{2}
Kua oti te whārite te whakatau.
\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x+5.
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te 3x-8 ka whakakotahi i ngā kupu rite.
3x^{2}+7x-40=5x^{2}-12x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te 5x-2 ka whakakotahi i ngā kupu rite.
3x^{2}+7x-40-5x^{2}=-12x+4
Tangohia te 5x^{2} mai i ngā taha e rua.
-2x^{2}+7x-40=-12x+4
Pahekotia te 3x^{2} me -5x^{2}, ka -2x^{2}.
-2x^{2}+7x-40+12x=4
Me tāpiri te 12x ki ngā taha e rua.
-2x^{2}+19x-40=4
Pahekotia te 7x me 12x, ka 19x.
-2x^{2}+19x=4+40
Me tāpiri te 40 ki ngā taha e rua.
-2x^{2}+19x=44
Tāpirihia te 4 ki te 40, ka 44.
\frac{-2x^{2}+19x}{-2}=\frac{44}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{19}{-2}x=\frac{44}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{19}{2}x=\frac{44}{-2}
Whakawehe 19 ki te -2.
x^{2}-\frac{19}{2}x=-22
Whakawehe 44 ki te -2.
x^{2}-\frac{19}{2}x+\left(-\frac{19}{4}\right)^{2}=-22+\left(-\frac{19}{4}\right)^{2}
Whakawehea te -\frac{19}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{19}{4}. Nā, tāpiria te pūrua o te -\frac{19}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{19}{2}x+\frac{361}{16}=-22+\frac{361}{16}
Pūruatia -\frac{19}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{19}{2}x+\frac{361}{16}=\frac{9}{16}
Tāpiri -22 ki te \frac{361}{16}.
\left(x-\frac{19}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}-\frac{19}{2}x+\frac{361}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{19}{4}=\frac{3}{4} x-\frac{19}{4}=-\frac{3}{4}
Whakarūnātia.
x=\frac{11}{2} x=4
Me tāpiri \frac{19}{4} ki ngā taha e rua o te whārite.