Whakaoti mō x
x=\frac{1}{2}=0.5
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+5,x+2.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te 3x-7 ka whakakotahi i ngā kupu rite.
3x^{2}-x-14=x^{2}+2x-15
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-3 ka whakakotahi i ngā kupu rite.
3x^{2}-x-14-x^{2}=2x-15
Tangohia te x^{2} mai i ngā taha e rua.
2x^{2}-x-14=2x-15
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
2x^{2}-x-14-2x=-15
Tangohia te 2x mai i ngā taha e rua.
2x^{2}-3x-14=-15
Pahekotia te -x me -2x, ka -3x.
2x^{2}-3x-14+15=0
Me tāpiri te 15 ki ngā taha e rua.
2x^{2}-3x+1=0
Tāpirihia te -14 ki te 15, ka 1.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -3 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2\times 2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-3\right)±\sqrt{1}}{2\times 2}
Tāpiri 9 ki te -8.
x=\frac{-\left(-3\right)±1}{2\times 2}
Tuhia te pūtakerua o te 1.
x=\frac{3±1}{2\times 2}
Ko te tauaro o -3 ko 3.
x=\frac{3±1}{4}
Whakareatia 2 ki te 2.
x=\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{3±1}{4} ina he tāpiri te ±. Tāpiri 3 ki te 1.
x=1
Whakawehe 4 ki te 4.
x=\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{3±1}{4} ina he tango te ±. Tango 1 mai i 3.
x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=\frac{1}{2}
Kua oti te whārite te whakatau.
\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+5,x+2.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te 3x-7 ka whakakotahi i ngā kupu rite.
3x^{2}-x-14=x^{2}+2x-15
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-3 ka whakakotahi i ngā kupu rite.
3x^{2}-x-14-x^{2}=2x-15
Tangohia te x^{2} mai i ngā taha e rua.
2x^{2}-x-14=2x-15
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
2x^{2}-x-14-2x=-15
Tangohia te 2x mai i ngā taha e rua.
2x^{2}-3x-14=-15
Pahekotia te -x me -2x, ka -3x.
2x^{2}-3x=-15+14
Me tāpiri te 14 ki ngā taha e rua.
2x^{2}-3x=-1
Tāpirihia te -15 ki te 14, ka -1.
\frac{2x^{2}-3x}{2}=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Tāpiri -\frac{1}{2} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Whakarūnātia.
x=1 x=\frac{1}{2}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}