Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(3x-4\right)}{12}-\frac{4\left(2x-3\right)}{12}+\frac{x-15}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 3 ko 12. Whakareatia \frac{3x-4}{4} ki te \frac{3}{3}. Whakareatia \frac{2x-3}{3} ki te \frac{4}{4}.
\frac{3\left(3x-4\right)-4\left(2x-3\right)}{12}+\frac{x-15}{2}
Tā te mea he rite te tauraro o \frac{3\left(3x-4\right)}{12} me \frac{4\left(2x-3\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{9x-12-8x+12}{12}+\frac{x-15}{2}
Mahia ngā whakarea i roto o 3\left(3x-4\right)-4\left(2x-3\right).
\frac{x}{12}+\frac{x-15}{2}
Whakakotahitia ngā kupu rite i 9x-12-8x+12.
\frac{x}{12}+\frac{6\left(x-15\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12 me 2 ko 12. Whakareatia \frac{x-15}{2} ki te \frac{6}{6}.
\frac{x+6\left(x-15\right)}{12}
Tā te mea he rite te tauraro o \frac{x}{12} me \frac{6\left(x-15\right)}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x+6x-90}{12}
Mahia ngā whakarea i roto o x+6\left(x-15\right).
\frac{7x-90}{12}
Whakakotahitia ngā kupu rite i x+6x-90.
\frac{3\left(3x-4\right)}{12}-\frac{4\left(2x-3\right)}{12}+\frac{x-15}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 3 ko 12. Whakareatia \frac{3x-4}{4} ki te \frac{3}{3}. Whakareatia \frac{2x-3}{3} ki te \frac{4}{4}.
\frac{3\left(3x-4\right)-4\left(2x-3\right)}{12}+\frac{x-15}{2}
Tā te mea he rite te tauraro o \frac{3\left(3x-4\right)}{12} me \frac{4\left(2x-3\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{9x-12-8x+12}{12}+\frac{x-15}{2}
Mahia ngā whakarea i roto o 3\left(3x-4\right)-4\left(2x-3\right).
\frac{x}{12}+\frac{x-15}{2}
Whakakotahitia ngā kupu rite i 9x-12-8x+12.
\frac{x}{12}+\frac{6\left(x-15\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12 me 2 ko 12. Whakareatia \frac{x-15}{2} ki te \frac{6}{6}.
\frac{x+6\left(x-15\right)}{12}
Tā te mea he rite te tauraro o \frac{x}{12} me \frac{6\left(x-15\right)}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x+6x-90}{12}
Mahia ngā whakarea i roto o x+6\left(x-15\right).
\frac{7x-90}{12}
Whakakotahitia ngā kupu rite i x+6x-90.