Aromātai
\frac{7x}{12}-\frac{15}{2}
Whakaroha
\frac{7x}{12}-\frac{15}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\left(3x-4\right)}{12}-\frac{4\left(2x-3\right)}{12}+\frac{x-15}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 3 ko 12. Whakareatia \frac{3x-4}{4} ki te \frac{3}{3}. Whakareatia \frac{2x-3}{3} ki te \frac{4}{4}.
\frac{3\left(3x-4\right)-4\left(2x-3\right)}{12}+\frac{x-15}{2}
Tā te mea he rite te tauraro o \frac{3\left(3x-4\right)}{12} me \frac{4\left(2x-3\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{9x-12-8x+12}{12}+\frac{x-15}{2}
Mahia ngā whakarea i roto o 3\left(3x-4\right)-4\left(2x-3\right).
\frac{x}{12}+\frac{x-15}{2}
Whakakotahitia ngā kupu rite i 9x-12-8x+12.
\frac{x}{12}+\frac{6\left(x-15\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12 me 2 ko 12. Whakareatia \frac{x-15}{2} ki te \frac{6}{6}.
\frac{x+6\left(x-15\right)}{12}
Tā te mea he rite te tauraro o \frac{x}{12} me \frac{6\left(x-15\right)}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x+6x-90}{12}
Mahia ngā whakarea i roto o x+6\left(x-15\right).
\frac{7x-90}{12}
Whakakotahitia ngā kupu rite i x+6x-90.
\frac{3\left(3x-4\right)}{12}-\frac{4\left(2x-3\right)}{12}+\frac{x-15}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 3 ko 12. Whakareatia \frac{3x-4}{4} ki te \frac{3}{3}. Whakareatia \frac{2x-3}{3} ki te \frac{4}{4}.
\frac{3\left(3x-4\right)-4\left(2x-3\right)}{12}+\frac{x-15}{2}
Tā te mea he rite te tauraro o \frac{3\left(3x-4\right)}{12} me \frac{4\left(2x-3\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{9x-12-8x+12}{12}+\frac{x-15}{2}
Mahia ngā whakarea i roto o 3\left(3x-4\right)-4\left(2x-3\right).
\frac{x}{12}+\frac{x-15}{2}
Whakakotahitia ngā kupu rite i 9x-12-8x+12.
\frac{x}{12}+\frac{6\left(x-15\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12 me 2 ko 12. Whakareatia \frac{x-15}{2} ki te \frac{6}{6}.
\frac{x+6\left(x-15\right)}{12}
Tā te mea he rite te tauraro o \frac{x}{12} me \frac{6\left(x-15\right)}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x+6x-90}{12}
Mahia ngā whakarea i roto o x+6\left(x-15\right).
\frac{7x-90}{12}
Whakakotahitia ngā kupu rite i x+6x-90.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}