Whakaoti mō x
x = \frac{39}{8} = 4\frac{7}{8} = 4.875
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(3x-1\right)=3x+12+\left(x+3\right)\times 7
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -4,-3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x+3\right)\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+7x+12,2x+6,6x+24.
18x-6=3x+12+\left(x+3\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 3x-1.
18x-6=3x+12+7x+21
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 7.
18x-6=10x+12+21
Pahekotia te 3x me 7x, ka 10x.
18x-6=10x+33
Tāpirihia te 12 ki te 21, ka 33.
18x-6-10x=33
Tangohia te 10x mai i ngā taha e rua.
8x-6=33
Pahekotia te 18x me -10x, ka 8x.
8x=33+6
Me tāpiri te 6 ki ngā taha e rua.
8x=39
Tāpirihia te 33 ki te 6, ka 39.
x=\frac{39}{8}
Whakawehea ngā taha e rua ki te 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}