Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3}{7}x-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Whakawehea ia wā o 3x-1 ki te 7, kia riro ko \frac{3}{7}x-\frac{1}{7}.
\frac{\frac{3}{7}x}{\frac{3}{5}}+\frac{-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Whakawehea ia wā o \frac{3}{7}x-\frac{1}{7} ki te \frac{3}{5}, kia riro ko \frac{\frac{3}{7}x}{\frac{3}{5}}+\frac{-\frac{1}{7}}{\frac{3}{5}}.
\frac{5}{7}x+\frac{-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Whakawehea te \frac{3}{7}x ki te \frac{3}{5}, kia riro ko \frac{5}{7}x.
\frac{5}{7}x-\frac{1}{7}\times \frac{5}{3}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Whakawehe -\frac{1}{7} ki te \frac{3}{5} mā te whakarea -\frac{1}{7} ki te tau huripoki o \frac{3}{5}.
\frac{5}{7}x+\frac{-5}{7\times 3}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Me whakarea te -\frac{1}{7} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{7}x+\frac{-5}{21}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{-5}{7\times 3}.
\frac{5}{7}x-\frac{5}{21}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Ka taea te hautanga \frac{-5}{21} te tuhi anō ko -\frac{5}{21} mā te tango i te tohu tōraro.
\frac{5}{7}x-\frac{5}{21}-\frac{\frac{2x}{3}}{\frac{7}{5}}=0
Tangohia te \frac{\frac{2x}{3}}{\frac{7}{5}} mai i ngā taha e rua.
\frac{5}{7}x-\frac{\frac{2x}{3}}{\frac{7}{5}}=\frac{5}{21}
Me tāpiri te \frac{5}{21} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-\frac{2x}{\frac{7}{5}\times 3}+\frac{5}{7}x=\frac{5}{21}
Whakaraupapatia anō ngā kīanga tau.
-\frac{2x}{\frac{7\times 3}{5}}+\frac{5}{7}x=\frac{5}{21}
Tuhia te \frac{7}{5}\times 3 hei hautanga kotahi.
-\frac{2x}{\frac{21}{5}}+\frac{5}{7}x=\frac{5}{21}
Whakareatia te 7 ki te 3, ka 21.
-\frac{10}{21}x+\frac{5}{7}x=\frac{5}{21}
Whakawehea te 2x ki te \frac{21}{5}, kia riro ko \frac{10}{21}x.
\frac{5}{21}x=\frac{5}{21}
Pahekotia te -\frac{10}{21}x me \frac{5}{7}x, ka \frac{5}{21}x.
x=\frac{5}{21}\times \frac{21}{5}
Me whakarea ngā taha e rua ki te \frac{21}{5}, te tau utu o \frac{5}{21}.
x=1
Me whakakore atu te \frac{5}{21} me tōna tau utu \frac{21}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}