Whakaoti mō x
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
24\left(3x-1\right)-20\left(5x+1\right)=15\left(x+1\right)-360
Me whakarea ngā taha e rua o te whārite ki te 120, arā, te tauraro pātahi he tino iti rawa te kitea o 5,6,8.
72x-24-20\left(5x+1\right)=15\left(x+1\right)-360
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te 3x-1.
72x-24-100x-20=15\left(x+1\right)-360
Whakamahia te āhuatanga tohatoha hei whakarea te -20 ki te 5x+1.
-28x-24-20=15\left(x+1\right)-360
Pahekotia te 72x me -100x, ka -28x.
-28x-44=15\left(x+1\right)-360
Tangohia te 20 i te -24, ka -44.
-28x-44=15x+15-360
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te x+1.
-28x-44=15x-345
Tangohia te 360 i te 15, ka -345.
-28x-44-15x=-345
Tangohia te 15x mai i ngā taha e rua.
-43x-44=-345
Pahekotia te -28x me -15x, ka -43x.
-43x=-345+44
Me tāpiri te 44 ki ngā taha e rua.
-43x=-301
Tāpirihia te -345 ki te 44, ka -301.
x=\frac{-301}{-43}
Whakawehea ngā taha e rua ki te -43.
x=7
Whakawehea te -301 ki te -43, kia riro ko 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}