Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-\left(-\left(1+x\right)x\right)=x-2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-2,2-x,x+1.
3x-\left(-1-x\right)x=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te 1+x.
3x-\left(-x-x^{2}\right)=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1-x ki te x.
3x+x+x^{2}=x-2
Hei kimi i te tauaro o -x-x^{2}, kimihia te tauaro o ia taurangi.
4x+x^{2}=x-2
Pahekotia te 3x me x, ka 4x.
4x+x^{2}-x=-2
Tangohia te x mai i ngā taha e rua.
3x+x^{2}=-2
Pahekotia te 4x me -x, ka 3x.
3x+x^{2}+2=0
Me tāpiri te 2 ki ngā taha e rua.
x^{2}+3x+2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=2
Hei whakaoti i te whārite, whakatauwehea te x^{2}+3x+2 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x+1\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-1 x=-2
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+2=0.
x=-2
Tē taea kia ōrite te tāupe x ki -1.
3x-\left(-\left(1+x\right)x\right)=x-2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-2,2-x,x+1.
3x-\left(-1-x\right)x=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te 1+x.
3x-\left(-x-x^{2}\right)=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1-x ki te x.
3x+x+x^{2}=x-2
Hei kimi i te tauaro o -x-x^{2}, kimihia te tauaro o ia taurangi.
4x+x^{2}=x-2
Pahekotia te 3x me x, ka 4x.
4x+x^{2}-x=-2
Tangohia te x mai i ngā taha e rua.
3x+x^{2}=-2
Pahekotia te 4x me -x, ka 3x.
3x+x^{2}+2=0
Me tāpiri te 2 ki ngā taha e rua.
x^{2}+3x+2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=1\times 2=2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}+x\right)+\left(2x+2\right)
Tuhia anō te x^{2}+3x+2 hei \left(x^{2}+x\right)+\left(2x+2\right).
x\left(x+1\right)+2\left(x+1\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x+1\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-1 x=-2
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+2=0.
x=-2
Tē taea kia ōrite te tāupe x ki -1.
3x-\left(-\left(1+x\right)x\right)=x-2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-2,2-x,x+1.
3x-\left(-1-x\right)x=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te 1+x.
3x-\left(-x-x^{2}\right)=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1-x ki te x.
3x+x+x^{2}=x-2
Hei kimi i te tauaro o -x-x^{2}, kimihia te tauaro o ia taurangi.
4x+x^{2}=x-2
Pahekotia te 3x me x, ka 4x.
4x+x^{2}-x=-2
Tangohia te x mai i ngā taha e rua.
3x+x^{2}=-2
Pahekotia te 4x me -x, ka 3x.
3x+x^{2}+2=0
Me tāpiri te 2 ki ngā taha e rua.
x^{2}+3x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 2}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2}}{2}
Pūrua 3.
x=\frac{-3±\sqrt{9-8}}{2}
Whakareatia -4 ki te 2.
x=\frac{-3±\sqrt{1}}{2}
Tāpiri 9 ki te -8.
x=\frac{-3±1}{2}
Tuhia te pūtakerua o te 1.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-3±1}{2} ina he tāpiri te ±. Tāpiri -3 ki te 1.
x=-1
Whakawehe -2 ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-3±1}{2} ina he tango te ±. Tango 1 mai i -3.
x=-2
Whakawehe -4 ki te 2.
x=-1 x=-2
Kua oti te whārite te whakatau.
x=-2
Tē taea kia ōrite te tāupe x ki -1.
3x-\left(-\left(1+x\right)x\right)=x-2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-x-2,2-x,x+1.
3x-\left(-1-x\right)x=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te 1+x.
3x-\left(-x-x^{2}\right)=x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -1-x ki te x.
3x+x+x^{2}=x-2
Hei kimi i te tauaro o -x-x^{2}, kimihia te tauaro o ia taurangi.
4x+x^{2}=x-2
Pahekotia te 3x me x, ka 4x.
4x+x^{2}-x=-2
Tangohia te x mai i ngā taha e rua.
3x+x^{2}=-2
Pahekotia te 4x me -x, ka 3x.
x^{2}+3x=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=-2+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{1}{4}
Tāpiri -2 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{1}{2} x+\frac{3}{2}=-\frac{1}{2}
Whakarūnātia.
x=-1 x=-2
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
x=-2
Tē taea kia ōrite te tāupe x ki -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}