Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{2}+7x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+7x^{1}+12)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}+7x^{1}+12\right)\times 3x^{1-1}-3x^{1}\left(2x^{2-1}+7x^{1-1}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}+7x^{1}+12\right)\times 3x^{0}-3x^{1}\left(2x^{1}+7x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Whakarūnātia.
\frac{x^{2}\times 3x^{0}+7x^{1}\times 3x^{0}+12\times 3x^{0}-3x^{1}\left(2x^{1}+7x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Whakareatia x^{2}+7x^{1}+12 ki te 3x^{0}.
\frac{x^{2}\times 3x^{0}+7x^{1}\times 3x^{0}+12\times 3x^{0}-\left(3x^{1}\times 2x^{1}+3x^{1}\times 7x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Whakareatia 3x^{1} ki te 2x^{1}+7x^{0}.
\frac{3x^{2}+7\times 3x^{1}+12\times 3x^{0}-\left(3\times 2x^{1+1}+3\times 7x^{1}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3x^{2}+21x^{1}+36x^{0}-\left(6x^{2}+21x^{1}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Whakarūnātia.
\frac{-3x^{2}+36x^{0}}{\left(x^{2}+7x^{1}+12\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-3x^{2}+36x^{0}}{\left(x^{2}+7x+12\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-3x^{2}+36\times 1}{\left(x^{2}+7x+12\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{-3x^{2}+36}{\left(x^{2}+7x+12\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.