Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x\times 3x+\left(x+1\right)\times 6=\left(2x+2\right)\times 7
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,2x,x.
6xx+\left(x+1\right)\times 6=\left(2x+2\right)\times 7
Whakareatia te 2 ki te 3, ka 6.
6x^{2}+\left(x+1\right)\times 6=\left(2x+2\right)\times 7
Whakareatia te x ki te x, ka x^{2}.
6x^{2}+6x+6=\left(2x+2\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 6.
6x^{2}+6x+6=14x+14
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+2 ki te 7.
6x^{2}+6x+6-14x=14
Tangohia te 14x mai i ngā taha e rua.
6x^{2}-8x+6=14
Pahekotia te 6x me -14x, ka -8x.
6x^{2}-8x+6-14=0
Tangohia te 14 mai i ngā taha e rua.
6x^{2}-8x-8=0
Tangohia te 14 i te 6, ka -8.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 6\left(-8\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -8 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 6\left(-8\right)}}{2\times 6}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-24\left(-8\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 6}
Whakareatia -24 ki te -8.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 6}
Tāpiri 64 ki te 192.
x=\frac{-\left(-8\right)±16}{2\times 6}
Tuhia te pūtakerua o te 256.
x=\frac{8±16}{2\times 6}
Ko te tauaro o -8 ko 8.
x=\frac{8±16}{12}
Whakareatia 2 ki te 6.
x=\frac{24}{12}
Nā, me whakaoti te whārite x=\frac{8±16}{12} ina he tāpiri te ±. Tāpiri 8 ki te 16.
x=2
Whakawehe 24 ki te 12.
x=-\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{8±16}{12} ina he tango te ±. Tango 16 mai i 8.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=2 x=-\frac{2}{3}
Kua oti te whārite te whakatau.
2x\times 3x+\left(x+1\right)\times 6=\left(2x+2\right)\times 7
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,2x,x.
6xx+\left(x+1\right)\times 6=\left(2x+2\right)\times 7
Whakareatia te 2 ki te 3, ka 6.
6x^{2}+\left(x+1\right)\times 6=\left(2x+2\right)\times 7
Whakareatia te x ki te x, ka x^{2}.
6x^{2}+6x+6=\left(2x+2\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 6.
6x^{2}+6x+6=14x+14
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+2 ki te 7.
6x^{2}+6x+6-14x=14
Tangohia te 14x mai i ngā taha e rua.
6x^{2}-8x+6=14
Pahekotia te 6x me -14x, ka -8x.
6x^{2}-8x=14-6
Tangohia te 6 mai i ngā taha e rua.
6x^{2}-8x=8
Tangohia te 6 i te 14, ka 8.
\frac{6x^{2}-8x}{6}=\frac{8}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{8}{6}\right)x=\frac{8}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{4}{3}x=\frac{8}{6}
Whakahekea te hautanga \frac{-8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{4}{3}x=\frac{4}{3}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{16}{9}
Tāpiri \frac{4}{3} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{3}\right)^{2}=\frac{16}{9}
Tauwehea x^{2}-\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{3}=\frac{4}{3} x-\frac{2}{3}=-\frac{4}{3}
Whakarūnātia.
x=2 x=-\frac{2}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}