Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3x}{3\left(x+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x}{x+3}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\left(3x^{1}+9\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+9)}{\left(3x^{1}+9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(3x^{1}+9\right)\times 3x^{1-1}-3x^{1}\times 3x^{1-1}}{\left(3x^{1}+9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(3x^{1}+9\right)\times 3x^{0}-3x^{1}\times 3x^{0}}{\left(3x^{1}+9\right)^{2}}
Mahia ngā tātaitanga.
\frac{3x^{1}\times 3x^{0}+9\times 3x^{0}-3x^{1}\times 3x^{0}}{\left(3x^{1}+9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3\times 3x^{1}+9\times 3x^{0}-3\times 3x^{1}}{\left(3x^{1}+9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{9x^{1}+27x^{0}-9x^{1}}{\left(3x^{1}+9\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(9-9\right)x^{1}+27x^{0}}{\left(3x^{1}+9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{27x^{0}}{\left(3x^{1}+9\right)^{2}}
Tango 9 mai i 9.
\frac{27x^{0}}{\left(3x+9\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{27\times 1}{\left(3x+9\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{27}{\left(3x+9\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.