Whakaoti mō x, y
x=6
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+2y=22
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+y=14
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
3x+2y=22,2x+y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=22
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+22
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+22\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{22}{3}
Whakareatia \frac{1}{3} ki te -2y+22.
2\left(-\frac{2}{3}y+\frac{22}{3}\right)+y=14
Whakakapia te \frac{-2y+22}{3} mō te x ki tērā atu whārite, 2x+y=14.
-\frac{4}{3}y+\frac{44}{3}+y=14
Whakareatia 2 ki te \frac{-2y+22}{3}.
-\frac{1}{3}y+\frac{44}{3}=14
Tāpiri -\frac{4y}{3} ki te y.
-\frac{1}{3}y=-\frac{2}{3}
Me tango \frac{44}{3} mai i ngā taha e rua o te whārite.
y=2
Me whakarea ngā taha e rua ki te -3.
x=-\frac{2}{3}\times 2+\frac{22}{3}
Whakaurua te 2 mō y ki x=-\frac{2}{3}y+\frac{22}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+22}{3}
Whakareatia -\frac{2}{3} ki te 2.
x=6
Tāpiri \frac{22}{3} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=2
Kua oti te pūnaha te whakatau.
3x+2y=22
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+y=14
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
3x+2y=22,2x+y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\2&1\end{matrix}\right))\left(\begin{matrix}3&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&1\end{matrix}\right))\left(\begin{matrix}22\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&1\end{matrix}\right))\left(\begin{matrix}22\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&1\end{matrix}\right))\left(\begin{matrix}22\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{3}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}22\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}22\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-22+2\times 14\\2\times 22-3\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=2
Tangohia ngā huānga poukapa x me y.
3x+2y=22
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+y=14
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
3x+2y=22,2x+y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 2y=2\times 22,3\times 2x+3y=3\times 14
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+4y=44,6x+3y=42
Whakarūnātia.
6x-6x+4y-3y=44-42
Me tango 6x+3y=42 mai i 6x+4y=44 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-3y=44-42
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=44-42
Tāpiri 4y ki te -3y.
y=2
Tāpiri 44 ki te -42.
2x+2=14
Whakaurua te 2 mō y ki 2x+y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=12
Me tango 2 mai i ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 2.
x=6,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}