Whakaoti mō x
x = -\frac{27}{13} = -2\frac{1}{13} \approx -2.076923077
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\times 3x+3+12\times 2=3\times 3x-4x
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4,3.
18x+3+12\times 2=3\times 3x-4x
Whakareatia te 6 ki te 3, ka 18.
18x+3+24=3\times 3x-4x
Whakareatia te 12 ki te 2, ka 24.
18x+27=3\times 3x-4x
Tāpirihia te 3 ki te 24, ka 27.
18x+27=9x-4x
Whakareatia te 3 ki te 3, ka 9.
18x+27=5x
Pahekotia te 9x me -4x, ka 5x.
18x+27-5x=0
Tangohia te 5x mai i ngā taha e rua.
13x+27=0
Pahekotia te 18x me -5x, ka 13x.
13x=-27
Tangohia te 27 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-27}{13}
Whakawehea ngā taha e rua ki te 13.
x=-\frac{27}{13}
Ka taea te hautanga \frac{-27}{13} te tuhi anō ko -\frac{27}{13} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}