Whakaoti mō x
x = \frac{\sqrt{337} + 1}{6} \approx 3.226259958
x=\frac{1-\sqrt{337}}{6}\approx -2.892926625
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 3 x } { + 4 } - \frac { 5 - x } { x + 1 } = 2
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\times 3x-4\left(5-x\right)=8\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4,x+1.
\left(3x+3\right)x-4\left(5-x\right)=8\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3x^{2}+3x-4\left(5-x\right)=8\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+3 ki te x.
3x^{2}+3x-20+4x=8\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 5-x.
3x^{2}+7x-20=8\left(x+1\right)
Pahekotia te 3x me 4x, ka 7x.
3x^{2}+7x-20=8x+8
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x+1.
3x^{2}+7x-20-8x=8
Tangohia te 8x mai i ngā taha e rua.
3x^{2}-x-20=8
Pahekotia te 7x me -8x, ka -x.
3x^{2}-x-20-8=0
Tangohia te 8 mai i ngā taha e rua.
3x^{2}-x-28=0
Tangohia te 8 i te -20, ka -28.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-28\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -1 mō b, me -28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-28\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-1\right)±\sqrt{1+336}}{2\times 3}
Whakareatia -12 ki te -28.
x=\frac{-\left(-1\right)±\sqrt{337}}{2\times 3}
Tāpiri 1 ki te 336.
x=\frac{1±\sqrt{337}}{2\times 3}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{337}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{337}+1}{6}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{337}}{6} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{337}.
x=\frac{1-\sqrt{337}}{6}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{337}}{6} ina he tango te ±. Tango \sqrt{337} mai i 1.
x=\frac{\sqrt{337}+1}{6} x=\frac{1-\sqrt{337}}{6}
Kua oti te whārite te whakatau.
\left(x+1\right)\times 3x-4\left(5-x\right)=8\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4,x+1.
\left(3x+3\right)x-4\left(5-x\right)=8\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3x^{2}+3x-4\left(5-x\right)=8\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+3 ki te x.
3x^{2}+3x-20+4x=8\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 5-x.
3x^{2}+7x-20=8\left(x+1\right)
Pahekotia te 3x me 4x, ka 7x.
3x^{2}+7x-20=8x+8
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x+1.
3x^{2}+7x-20-8x=8
Tangohia te 8x mai i ngā taha e rua.
3x^{2}-x-20=8
Pahekotia te 7x me -8x, ka -x.
3x^{2}-x=8+20
Me tāpiri te 20 ki ngā taha e rua.
3x^{2}-x=28
Tāpirihia te 8 ki te 20, ka 28.
\frac{3x^{2}-x}{3}=\frac{28}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{1}{3}x=\frac{28}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{28}{3}+\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{28}{3}+\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{337}{36}
Tāpiri \frac{28}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{6}\right)^{2}=\frac{337}{36}
Tauwehea x^{2}-\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{337}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{6}=\frac{\sqrt{337}}{6} x-\frac{1}{6}=-\frac{\sqrt{337}}{6}
Whakarūnātia.
x=\frac{\sqrt{337}+1}{6} x=\frac{1-\sqrt{337}}{6}
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}