Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{3yx^{3}}{4}}{\frac{\frac{4}{x^{3}}}{6}y^{2}}
Me whakakore tahi te y^{2} i te taurunga me te tauraro.
\frac{\frac{3yx^{3}}{4}}{\frac{4}{x^{3}\times 6}y^{2}}
Tuhia te \frac{\frac{4}{x^{3}}}{6} hei hautanga kotahi.
\frac{\frac{3yx^{3}}{4}}{\frac{4y^{2}}{x^{3}\times 6}}
Tuhia te \frac{4}{x^{3}\times 6}y^{2} hei hautanga kotahi.
\frac{\frac{3yx^{3}}{4}}{\frac{2y^{2}}{3x^{3}}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3yx^{3}\times 3x^{3}}{4\times 2y^{2}}
Whakawehe \frac{3yx^{3}}{4} ki te \frac{2y^{2}}{3x^{3}} mā te whakarea \frac{3yx^{3}}{4} ki te tau huripoki o \frac{2y^{2}}{3x^{3}}.
\frac{3\times 3x^{3}x^{3}}{2\times 4y}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{3\times 3x^{6}}{2\times 4y}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 3 kia riro ai te 6.
\frac{9x^{6}}{2\times 4y}
Whakareatia te 3 ki te 3, ka 9.
\frac{9x^{6}}{8y}
Whakareatia te 2 ki te 4, ka 8.