Aromātai
\frac{x}{9}
Kimi Pārōnaki e ai ki x
\frac{1}{9} = 0.1111111111111111
Tohaina
Kua tāruatia ki te papatopenga
\frac{3^{1}x^{2}y^{3}}{27^{1}x^{1}y^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{3^{1}}{27^{1}}x^{2-1}y^{3-3}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{3^{1}}{27^{1}}x^{1}y^{3-3}
Tango 1 mai i 2.
\frac{3^{1}}{27^{1}}xy^{0}
Tango 3 mai i 3.
\frac{3^{1}}{27^{1}}x
Mō tētahi tau a mahue te 0, a^{0}=1.
\frac{1}{9}x
Whakahekea te hautanga \frac{3}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3y^{3}}{27y^{3}}x^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{9}x^{1})
Mahia ngā tātaitanga.
\frac{1}{9}x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{9}x^{0}
Mahia ngā tātaitanga.
\frac{1}{9}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{9}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}