Whakaoti mō x
x = \frac{\sqrt{29} - 1}{2} \approx 2.192582404
x=\frac{-\sqrt{29}-1}{2}\approx -3.192582404
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-8x+4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
3x^{2}-4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
Pahekotia te -8x me 4x, ka -4x.
3x^{2}-4x-2=5x^{2}-10x+\left(x-2\right)\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x-2.
3x^{2}-4x-2=5x^{2}-10x+8x-16
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 8.
3x^{2}-4x-2=5x^{2}-2x-16
Pahekotia te -10x me 8x, ka -2x.
3x^{2}-4x-2-5x^{2}=-2x-16
Tangohia te 5x^{2} mai i ngā taha e rua.
-2x^{2}-4x-2=-2x-16
Pahekotia te 3x^{2} me -5x^{2}, ka -2x^{2}.
-2x^{2}-4x-2+2x=-16
Me tāpiri te 2x ki ngā taha e rua.
-2x^{2}-2x-2=-16
Pahekotia te -4x me 2x, ka -2x.
-2x^{2}-2x-2+16=0
Me tāpiri te 16 ki ngā taha e rua.
-2x^{2}-2x+14=0
Tāpirihia te -2 ki te 16, ka 14.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 14}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -2 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 14}}{2\left(-2\right)}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\times 14}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-2\right)±\sqrt{4+112}}{2\left(-2\right)}
Whakareatia 8 ki te 14.
x=\frac{-\left(-2\right)±\sqrt{116}}{2\left(-2\right)}
Tāpiri 4 ki te 112.
x=\frac{-\left(-2\right)±2\sqrt{29}}{2\left(-2\right)}
Tuhia te pūtakerua o te 116.
x=\frac{2±2\sqrt{29}}{2\left(-2\right)}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{29}}{-4}
Whakareatia 2 ki te -2.
x=\frac{2\sqrt{29}+2}{-4}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{29}}{-4} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{29}.
x=\frac{-\sqrt{29}-1}{2}
Whakawehe 2+2\sqrt{29} ki te -4.
x=\frac{2-2\sqrt{29}}{-4}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{29}}{-4} ina he tango te ±. Tango 2\sqrt{29} mai i 2.
x=\frac{\sqrt{29}-1}{2}
Whakawehe 2-2\sqrt{29} ki te -4.
x=\frac{-\sqrt{29}-1}{2} x=\frac{\sqrt{29}-1}{2}
Kua oti te whārite te whakatau.
3x^{2}-8x+4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
3x^{2}-4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
Pahekotia te -8x me 4x, ka -4x.
3x^{2}-4x-2=5x^{2}-10x+\left(x-2\right)\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x-2.
3x^{2}-4x-2=5x^{2}-10x+8x-16
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 8.
3x^{2}-4x-2=5x^{2}-2x-16
Pahekotia te -10x me 8x, ka -2x.
3x^{2}-4x-2-5x^{2}=-2x-16
Tangohia te 5x^{2} mai i ngā taha e rua.
-2x^{2}-4x-2=-2x-16
Pahekotia te 3x^{2} me -5x^{2}, ka -2x^{2}.
-2x^{2}-4x-2+2x=-16
Me tāpiri te 2x ki ngā taha e rua.
-2x^{2}-2x-2=-16
Pahekotia te -4x me 2x, ka -2x.
-2x^{2}-2x=-16+2
Me tāpiri te 2 ki ngā taha e rua.
-2x^{2}-2x=-14
Tāpirihia te -16 ki te 2, ka -14.
\frac{-2x^{2}-2x}{-2}=-\frac{14}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{2}{-2}\right)x=-\frac{14}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+x=-\frac{14}{-2}
Whakawehe -2 ki te -2.
x^{2}+x=7
Whakawehe -14 ki te -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=7+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=7+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{29}{4}
Tāpiri 7 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{29}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{29}}{2} x+\frac{1}{2}=-\frac{\sqrt{29}}{2}
Whakarūnātia.
x=\frac{\sqrt{29}-1}{2} x=\frac{-\sqrt{29}-1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}