Whakaoti mō x
x=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-8x+4=5x\left(x-2\right)+\left(x-2\right)\times 8
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
3x^{2}-8x+4=5x^{2}-10x+\left(x-2\right)\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x-2.
3x^{2}-8x+4=5x^{2}-10x+8x-16
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 8.
3x^{2}-8x+4=5x^{2}-2x-16
Pahekotia te -10x me 8x, ka -2x.
3x^{2}-8x+4-5x^{2}=-2x-16
Tangohia te 5x^{2} mai i ngā taha e rua.
-2x^{2}-8x+4=-2x-16
Pahekotia te 3x^{2} me -5x^{2}, ka -2x^{2}.
-2x^{2}-8x+4+2x=-16
Me tāpiri te 2x ki ngā taha e rua.
-2x^{2}-6x+4=-16
Pahekotia te -8x me 2x, ka -6x.
-2x^{2}-6x+4+16=0
Me tāpiri te 16 ki ngā taha e rua.
-2x^{2}-6x+20=0
Tāpirihia te 4 ki te 16, ka 20.
-x^{2}-3x+10=0
Whakawehea ngā taha e rua ki te 2.
a+b=-3 ab=-10=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=2 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-x^{2}+2x\right)+\left(-5x+10\right)
Tuhia anō te -x^{2}-3x+10 hei \left(-x^{2}+2x\right)+\left(-5x+10\right).
x\left(-x+2\right)+5\left(-x+2\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(-x+2\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-5
Hei kimi otinga whārite, me whakaoti te -x+2=0 me te x+5=0.
x=-5
Tē taea kia ōrite te tāupe x ki 2.
3x^{2}-8x+4=5x\left(x-2\right)+\left(x-2\right)\times 8
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
3x^{2}-8x+4=5x^{2}-10x+\left(x-2\right)\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x-2.
3x^{2}-8x+4=5x^{2}-10x+8x-16
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 8.
3x^{2}-8x+4=5x^{2}-2x-16
Pahekotia te -10x me 8x, ka -2x.
3x^{2}-8x+4-5x^{2}=-2x-16
Tangohia te 5x^{2} mai i ngā taha e rua.
-2x^{2}-8x+4=-2x-16
Pahekotia te 3x^{2} me -5x^{2}, ka -2x^{2}.
-2x^{2}-8x+4+2x=-16
Me tāpiri te 2x ki ngā taha e rua.
-2x^{2}-6x+4=-16
Pahekotia te -8x me 2x, ka -6x.
-2x^{2}-6x+4+16=0
Me tāpiri te 16 ki ngā taha e rua.
-2x^{2}-6x+20=0
Tāpirihia te 4 ki te 16, ka 20.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\times 20}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -6 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\times 20}}{2\left(-2\right)}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+8\times 20}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2\left(-2\right)}
Whakareatia 8 ki te 20.
x=\frac{-\left(-6\right)±\sqrt{196}}{2\left(-2\right)}
Tāpiri 36 ki te 160.
x=\frac{-\left(-6\right)±14}{2\left(-2\right)}
Tuhia te pūtakerua o te 196.
x=\frac{6±14}{2\left(-2\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6±14}{-4}
Whakareatia 2 ki te -2.
x=\frac{20}{-4}
Nā, me whakaoti te whārite x=\frac{6±14}{-4} ina he tāpiri te ±. Tāpiri 6 ki te 14.
x=-5
Whakawehe 20 ki te -4.
x=-\frac{8}{-4}
Nā, me whakaoti te whārite x=\frac{6±14}{-4} ina he tango te ±. Tango 14 mai i 6.
x=2
Whakawehe -8 ki te -4.
x=-5 x=2
Kua oti te whārite te whakatau.
x=-5
Tē taea kia ōrite te tāupe x ki 2.
3x^{2}-8x+4=5x\left(x-2\right)+\left(x-2\right)\times 8
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
3x^{2}-8x+4=5x^{2}-10x+\left(x-2\right)\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x-2.
3x^{2}-8x+4=5x^{2}-10x+8x-16
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 8.
3x^{2}-8x+4=5x^{2}-2x-16
Pahekotia te -10x me 8x, ka -2x.
3x^{2}-8x+4-5x^{2}=-2x-16
Tangohia te 5x^{2} mai i ngā taha e rua.
-2x^{2}-8x+4=-2x-16
Pahekotia te 3x^{2} me -5x^{2}, ka -2x^{2}.
-2x^{2}-8x+4+2x=-16
Me tāpiri te 2x ki ngā taha e rua.
-2x^{2}-6x+4=-16
Pahekotia te -8x me 2x, ka -6x.
-2x^{2}-6x=-16-4
Tangohia te 4 mai i ngā taha e rua.
-2x^{2}-6x=-20
Tangohia te 4 i te -16, ka -20.
\frac{-2x^{2}-6x}{-2}=-\frac{20}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{6}{-2}\right)x=-\frac{20}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+3x=-\frac{20}{-2}
Whakawehe -6 ki te -2.
x^{2}+3x=10
Whakawehe -20 ki te -2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=10+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{7}{2} x+\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
x=2 x=-5
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
x=-5
Tē taea kia ōrite te tāupe x ki 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}