Aromātai
\frac{4}{y}
Kimi Pārōnaki e ai ki y
-\frac{4}{y^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3x^{0}}{y}+2y^{-1}-\frac{1}{y}
Tuhia anō te y^{-2} hei y^{-3}y. Me whakakore tahi te y^{-3} i te taurunga me te tauraro.
\frac{3\times 1}{y}+2y^{-1}-\frac{1}{y}
Tātaihia te x mā te pū o 0, kia riro ko 1.
\frac{3}{y}+2y^{-1}-\frac{1}{y}
Whakareatia te 3 ki te 1, ka 3.
\frac{3}{y}+\frac{2y^{-1}y}{y}-\frac{1}{y}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2y^{-1} ki te \frac{y}{y}.
\frac{3+2y^{-1}y}{y}-\frac{1}{y}
Tā te mea he rite te tauraro o \frac{3}{y} me \frac{2y^{-1}y}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3+2}{y}-\frac{1}{y}
Mahia ngā whakarea i roto o 3+2y^{-1}y.
\frac{5}{y}-\frac{1}{y}
Mahia ngā tātaitai i roto o 3+2.
\frac{4}{y}
Tā te mea he rite te tauraro o \frac{5}{y} me \frac{1}{y}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 5, ka 4.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3x^{0}}{y}+2y^{-1}-\frac{1}{y})
Tuhia anō te y^{-2} hei y^{-3}y. Me whakakore tahi te y^{-3} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3\times 1}{y}+2y^{-1}-\frac{1}{y})
Tātaihia te x mā te pū o 0, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3}{y}+2y^{-1}-\frac{1}{y})
Whakareatia te 3 ki te 1, ka 3.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3}{y}+\frac{2y^{-1}y}{y}-\frac{1}{y})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2y^{-1} ki te \frac{y}{y}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3+2y^{-1}y}{y}-\frac{1}{y})
Tā te mea he rite te tauraro o \frac{3}{y} me \frac{2y^{-1}y}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3+2}{y}-\frac{1}{y})
Mahia ngā whakarea i roto o 3+2y^{-1}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{5}{y}-\frac{1}{y})
Mahia ngā tātaitai i roto o 3+2.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{4}{y})
Tā te mea he rite te tauraro o \frac{5}{y} me \frac{1}{y}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 5, ka 4.
-4y^{-1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-4y^{-2}
Tango 1 mai i -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}