Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3x^{0}}{y}+2y^{-1}-\frac{1}{y}
Tuhia anō te y^{-2} hei y^{-3}y. Me whakakore tahi te y^{-3} i te taurunga me te tauraro.
\frac{3\times 1}{y}+2y^{-1}-\frac{1}{y}
Tātaihia te x mā te pū o 0, kia riro ko 1.
\frac{3}{y}+2y^{-1}-\frac{1}{y}
Whakareatia te 3 ki te 1, ka 3.
\frac{3}{y}+\frac{2y^{-1}y}{y}-\frac{1}{y}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2y^{-1} ki te \frac{y}{y}.
\frac{3+2y^{-1}y}{y}-\frac{1}{y}
Tā te mea he rite te tauraro o \frac{3}{y} me \frac{2y^{-1}y}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3+2}{y}-\frac{1}{y}
Mahia ngā whakarea i roto o 3+2y^{-1}y.
\frac{5}{y}-\frac{1}{y}
Mahia ngā tātaitai i roto o 3+2.
\frac{4}{y}
Tā te mea he rite te tauraro o \frac{5}{y} me \frac{1}{y}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 5, ka 4.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3x^{0}}{y}+2y^{-1}-\frac{1}{y})
Tuhia anō te y^{-2} hei y^{-3}y. Me whakakore tahi te y^{-3} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3\times 1}{y}+2y^{-1}-\frac{1}{y})
Tātaihia te x mā te pū o 0, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3}{y}+2y^{-1}-\frac{1}{y})
Whakareatia te 3 ki te 1, ka 3.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3}{y}+\frac{2y^{-1}y}{y}-\frac{1}{y})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2y^{-1} ki te \frac{y}{y}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3+2y^{-1}y}{y}-\frac{1}{y})
Tā te mea he rite te tauraro o \frac{3}{y} me \frac{2y^{-1}y}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3+2}{y}-\frac{1}{y})
Mahia ngā whakarea i roto o 3+2y^{-1}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{5}{y}-\frac{1}{y})
Mahia ngā tātaitai i roto o 3+2.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{4}{y})
Tā te mea he rite te tauraro o \frac{5}{y} me \frac{1}{y}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 5, ka 4.
-4y^{-1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-4y^{-2}
Tango 1 mai i -1.