Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{y^{-3}x^{-2}}{2x^{-4}\times \frac{1}{y}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{y^{-3}x^{2}}{2\times \frac{1}{y}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{x^{2}}{2y^{2}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{y^{3}\times \frac{6}{y}}x^{-2-\left(-4\right)})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2y^{2}}x^{2})
Mahia ngā tātaitanga.
2\times \frac{1}{2y^{2}}x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{y^{2}}x^{1}
Mahia ngā tātaitanga.
\frac{1}{y^{2}}x
Mō tētahi kupu t, t^{1}=t.