Whakaoti mō x
x=\frac{15}{38}\approx 0.394736842
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-1\right)\left(3x+54\right)+3x\left(4x^{2}+9\right)=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},0,\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x\left(2x-1\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 6x^{2}+3x,4x^{2}-1,3x,3,1-4x^{2}.
6x^{2}+105x-54+3x\left(4x^{2}+9\right)=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-1 ki te 3x+54 ka whakakotahi i ngā kupu rite.
6x^{2}+105x-54+12x^{3}+27x=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 4x^{2}+9.
6x^{2}+132x-54+12x^{3}=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Pahekotia te 105x me 27x, ka 132x.
6x^{2}+132x-54+12x^{3}=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)x^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
6x^{2}+132x-54+12x^{3}=4x^{3}+6x^{2}-x-\frac{3}{2}-\frac{8}{3}\left(-3\right)x^{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 4x^{2}-1 ki te x+\frac{3}{2}.
6x^{2}+132x-54+12x^{3}=4x^{3}+6x^{2}-x-\frac{3}{2}-\left(-8x^{3}\right)
Whakareatia te \frac{8}{3} ki te -3, ka -8.
6x^{2}+132x-54+12x^{3}=4x^{3}+6x^{2}-x-\frac{3}{2}+8x^{3}
Ko te tauaro o -8x^{3} ko 8x^{3}.
6x^{2}+132x-54+12x^{3}=12x^{3}+6x^{2}-x-\frac{3}{2}
Pahekotia te 4x^{3} me 8x^{3}, ka 12x^{3}.
6x^{2}+132x-54+12x^{3}-12x^{3}=6x^{2}-x-\frac{3}{2}
Tangohia te 12x^{3} mai i ngā taha e rua.
6x^{2}+132x-54=6x^{2}-x-\frac{3}{2}
Pahekotia te 12x^{3} me -12x^{3}, ka 0.
6x^{2}+132x-54-6x^{2}=-x-\frac{3}{2}
Tangohia te 6x^{2} mai i ngā taha e rua.
132x-54=-x-\frac{3}{2}
Pahekotia te 6x^{2} me -6x^{2}, ka 0.
132x-54+x=-\frac{3}{2}
Me tāpiri te x ki ngā taha e rua.
133x-54=-\frac{3}{2}
Pahekotia te 132x me x, ka 133x.
133x=-\frac{3}{2}+54
Me tāpiri te 54 ki ngā taha e rua.
133x=\frac{105}{2}
Tāpirihia te -\frac{3}{2} ki te 54, ka \frac{105}{2}.
x=\frac{\frac{105}{2}}{133}
Whakawehea ngā taha e rua ki te 133.
x=\frac{105}{2\times 133}
Tuhia te \frac{\frac{105}{2}}{133} hei hautanga kotahi.
x=\frac{105}{266}
Whakareatia te 2 ki te 133, ka 266.
x=\frac{15}{38}
Whakahekea te hautanga \frac{105}{266} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}