Whakaoti mō x
x=\frac{1}{6}\approx 0.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+4=\left(x+2\right)\times 4+\left(x-1\right)\times 5
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+x-2,x-1,x+2.
3x+4=4x+8+\left(x-1\right)\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 4.
3x+4=4x+8+5x-5
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 5.
3x+4=9x+8-5
Pahekotia te 4x me 5x, ka 9x.
3x+4=9x+3
Tangohia te 5 i te 8, ka 3.
3x+4-9x=3
Tangohia te 9x mai i ngā taha e rua.
-6x+4=3
Pahekotia te 3x me -9x, ka -6x.
-6x=3-4
Tangohia te 4 mai i ngā taha e rua.
-6x=-1
Tangohia te 4 i te 3, ka -1.
x=\frac{-1}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{1}{6}
Ka taea te hautanga \frac{-1}{-6} te whakamāmā ki te \frac{1}{6} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}