Whakaoti mō x
x=\frac{\sqrt{15}}{5}+1\approx 1.774596669
x=-\frac{\sqrt{15}}{5}+1\approx 0.225403331
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9-x^{2},x+3,3-x.
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
Hei kimi i te tauaro o 3x+2, kimihia te tauaro o ia taurangi.
-3x-2=5x^{2}-14x-3+3+x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 5x+1 ka whakakotahi i ngā kupu rite.
-3x-2=5x^{2}-14x+x
Tāpirihia te -3 ki te 3, ka 0.
-3x-2=5x^{2}-13x
Pahekotia te -14x me x, ka -13x.
-3x-2-5x^{2}=-13x
Tangohia te 5x^{2} mai i ngā taha e rua.
-3x-2-5x^{2}+13x=0
Me tāpiri te 13x ki ngā taha e rua.
10x-2-5x^{2}=0
Pahekotia te -3x me 13x, ka 10x.
-5x^{2}+10x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 10 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
Pūrua 10.
x=\frac{-10±\sqrt{100+20\left(-2\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-10±\sqrt{100-40}}{2\left(-5\right)}
Whakareatia 20 ki te -2.
x=\frac{-10±\sqrt{60}}{2\left(-5\right)}
Tāpiri 100 ki te -40.
x=\frac{-10±2\sqrt{15}}{2\left(-5\right)}
Tuhia te pūtakerua o te 60.
x=\frac{-10±2\sqrt{15}}{-10}
Whakareatia 2 ki te -5.
x=\frac{2\sqrt{15}-10}{-10}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{15}}{-10} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{15}.
x=-\frac{\sqrt{15}}{5}+1
Whakawehe -10+2\sqrt{15} ki te -10.
x=\frac{-2\sqrt{15}-10}{-10}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{15}}{-10} ina he tango te ±. Tango 2\sqrt{15} mai i -10.
x=\frac{\sqrt{15}}{5}+1
Whakawehe -10-2\sqrt{15} ki te -10.
x=-\frac{\sqrt{15}}{5}+1 x=\frac{\sqrt{15}}{5}+1
Kua oti te whārite te whakatau.
-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9-x^{2},x+3,3-x.
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
Hei kimi i te tauaro o 3x+2, kimihia te tauaro o ia taurangi.
-3x-2=5x^{2}-14x-3+3+x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 5x+1 ka whakakotahi i ngā kupu rite.
-3x-2=5x^{2}-14x+x
Tāpirihia te -3 ki te 3, ka 0.
-3x-2=5x^{2}-13x
Pahekotia te -14x me x, ka -13x.
-3x-2-5x^{2}=-13x
Tangohia te 5x^{2} mai i ngā taha e rua.
-3x-2-5x^{2}+13x=0
Me tāpiri te 13x ki ngā taha e rua.
10x-2-5x^{2}=0
Pahekotia te -3x me 13x, ka 10x.
10x-5x^{2}=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-5x^{2}+10x=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5x^{2}+10x}{-5}=\frac{2}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\frac{10}{-5}x=\frac{2}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}-2x=\frac{2}{-5}
Whakawehe 10 ki te -5.
x^{2}-2x=-\frac{2}{5}
Whakawehe 2 ki te -5.
x^{2}-2x+1=-\frac{2}{5}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{3}{5}
Tāpiri -\frac{2}{5} ki te 1.
\left(x-1\right)^{2}=\frac{3}{5}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{3}{5}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{15}}{5} x-1=-\frac{\sqrt{15}}{5}
Whakarūnātia.
x=\frac{\sqrt{15}}{5}+1 x=-\frac{\sqrt{15}}{5}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}