Whakaoti mō x
x=-2
x=-\frac{2}{3}\approx -0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x+2\right)\times \frac{x+2}{3}=0
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,3.
\frac{\left(3x+2\right)\left(x+2\right)}{3}=0
Tuhia te \left(3x+2\right)\times \frac{x+2}{3} hei hautanga kotahi.
\frac{3x^{2}+6x+2x+4}{3}=0
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3x+2 ki ia tau o x+2.
\frac{3x^{2}+8x+4}{3}=0
Pahekotia te 6x me 2x, ka 8x.
x^{2}+\frac{8}{3}x+\frac{4}{3}=0
Whakawehea ia wā o 3x^{2}+8x+4 ki te 3, kia riro ko x^{2}+\frac{8}{3}x+\frac{4}{3}.
x=\frac{-\frac{8}{3}±\sqrt{\left(\frac{8}{3}\right)^{2}-4\times \frac{4}{3}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, \frac{8}{3} mō b, me \frac{4}{3} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}-4\times \frac{4}{3}}}{2}
Pūruatia \frac{8}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}-\frac{16}{3}}}{2}
Whakareatia -4 ki te \frac{4}{3}.
x=\frac{-\frac{8}{3}±\sqrt{\frac{16}{9}}}{2}
Tāpiri \frac{64}{9} ki te -\frac{16}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{8}{3}±\frac{4}{3}}{2}
Tuhia te pūtakerua o te \frac{16}{9}.
x=-\frac{\frac{4}{3}}{2}
Nā, me whakaoti te whārite x=\frac{-\frac{8}{3}±\frac{4}{3}}{2} ina he tāpiri te ±. Tāpiri -\frac{8}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{2}{3}
Whakawehe -\frac{4}{3} ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-\frac{8}{3}±\frac{4}{3}}{2} ina he tango te ±. Tango \frac{4}{3} mai i -\frac{8}{3} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2
Whakawehe -4 ki te 2.
x=-\frac{2}{3} x=-2
Kua oti te whārite te whakatau.
\left(3x+2\right)\times \frac{x+2}{3}=0
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,3.
\frac{\left(3x+2\right)\left(x+2\right)}{3}=0
Tuhia te \left(3x+2\right)\times \frac{x+2}{3} hei hautanga kotahi.
\frac{3x^{2}+6x+2x+4}{3}=0
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3x+2 ki ia tau o x+2.
\frac{3x^{2}+8x+4}{3}=0
Pahekotia te 6x me 2x, ka 8x.
x^{2}+\frac{8}{3}x+\frac{4}{3}=0
Whakawehea ia wā o 3x^{2}+8x+4 ki te 3, kia riro ko x^{2}+\frac{8}{3}x+\frac{4}{3}.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
Tangohia te \frac{4}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
Whakawehea te \frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{3}. Nā, tāpiria te pūrua o te \frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Pūruatia \frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
Tāpiri -\frac{4}{3} ki te \frac{16}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
Tauwehea x^{2}+\frac{8}{3}x+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
Whakarūnātia.
x=-\frac{2}{3} x=-2
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}