Whakaoti mō x
x=-\frac{17}{24}\approx -0.708333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\left(3x+2\right)-20=5\left(2x-1\right)-4\left(2+x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4,5.
30x+20-20=5\left(2x-1\right)-4\left(2+x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te 3x+2.
30x=5\left(2x-1\right)-4\left(2+x+1\right)
Tangohia te 20 i te 20, ka 0.
30x=10x-5-4\left(2+x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 2x-1.
30x=10x-5-4\left(3+x\right)
Tāpirihia te 2 ki te 1, ka 3.
30x=10x-5-12-4x
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3+x.
30x=10x-17-4x
Tangohia te 12 i te -5, ka -17.
30x=6x-17
Pahekotia te 10x me -4x, ka 6x.
30x-6x=-17
Tangohia te 6x mai i ngā taha e rua.
24x=-17
Pahekotia te 30x me -6x, ka 24x.
x=\frac{-17}{24}
Whakawehea ngā taha e rua ki te 24.
x=-\frac{17}{24}
Ka taea te hautanga \frac{-17}{24} te tuhi anō ko -\frac{17}{24} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}