Whakaoti mō x
x=-\frac{5}{6}\approx -0.833333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(3x+2\right)-\left(3x+1\right)=10+12x
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3.
9x+6-\left(3x+1\right)=10+12x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+2.
9x+6-3x-1=10+12x
Hei kimi i te tauaro o 3x+1, kimihia te tauaro o ia taurangi.
6x+6-1=10+12x
Pahekotia te 9x me -3x, ka 6x.
6x+5=10+12x
Tangohia te 1 i te 6, ka 5.
6x+5-12x=10
Tangohia te 12x mai i ngā taha e rua.
-6x+5=10
Pahekotia te 6x me -12x, ka -6x.
-6x=10-5
Tangohia te 5 mai i ngā taha e rua.
-6x=5
Tangohia te 5 i te 10, ka 5.
x=\frac{5}{-6}
Whakawehea ngā taha e rua ki te -6.
x=-\frac{5}{6}
Ka taea te hautanga \frac{5}{-6} te tuhi anō ko -\frac{5}{6} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}