Whakaoti mō w
w=-4
w=\frac{2}{3}\approx 0.666666667
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 3 w ( w + 8 ) + w ( w - 4 ) } { 2 } - 3 = 5 - w ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
3w\left(w+8\right)+w\left(w-4\right)-6=10-2w^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
3w^{2}+24w+w\left(w-4\right)-6=10-2w^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3w ki te w+8.
3w^{2}+24w+w^{2}-4w-6=10-2w^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te w ki te w-4.
4w^{2}+24w-4w-6=10-2w^{2}
Pahekotia te 3w^{2} me w^{2}, ka 4w^{2}.
4w^{2}+20w-6=10-2w^{2}
Pahekotia te 24w me -4w, ka 20w.
4w^{2}+20w-6-10=-2w^{2}
Tangohia te 10 mai i ngā taha e rua.
4w^{2}+20w-16=-2w^{2}
Tangohia te 10 i te -6, ka -16.
4w^{2}+20w-16+2w^{2}=0
Me tāpiri te 2w^{2} ki ngā taha e rua.
6w^{2}+20w-16=0
Pahekotia te 4w^{2} me 2w^{2}, ka 6w^{2}.
3w^{2}+10w-8=0
Whakawehea ngā taha e rua ki te 2.
a+b=10 ab=3\left(-8\right)=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3w^{2}+aw+bw-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-2 b=12
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(3w^{2}-2w\right)+\left(12w-8\right)
Tuhia anō te 3w^{2}+10w-8 hei \left(3w^{2}-2w\right)+\left(12w-8\right).
w\left(3w-2\right)+4\left(3w-2\right)
Tauwehea te w i te tuatahi me te 4 i te rōpū tuarua.
\left(3w-2\right)\left(w+4\right)
Whakatauwehea atu te kīanga pātahi 3w-2 mā te whakamahi i te āhuatanga tātai tohatoha.
w=\frac{2}{3} w=-4
Hei kimi otinga whārite, me whakaoti te 3w-2=0 me te w+4=0.
3w\left(w+8\right)+w\left(w-4\right)-6=10-2w^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
3w^{2}+24w+w\left(w-4\right)-6=10-2w^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3w ki te w+8.
3w^{2}+24w+w^{2}-4w-6=10-2w^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te w ki te w-4.
4w^{2}+24w-4w-6=10-2w^{2}
Pahekotia te 3w^{2} me w^{2}, ka 4w^{2}.
4w^{2}+20w-6=10-2w^{2}
Pahekotia te 24w me -4w, ka 20w.
4w^{2}+20w-6-10=-2w^{2}
Tangohia te 10 mai i ngā taha e rua.
4w^{2}+20w-16=-2w^{2}
Tangohia te 10 i te -6, ka -16.
4w^{2}+20w-16+2w^{2}=0
Me tāpiri te 2w^{2} ki ngā taha e rua.
6w^{2}+20w-16=0
Pahekotia te 4w^{2} me 2w^{2}, ka 6w^{2}.
w=\frac{-20±\sqrt{20^{2}-4\times 6\left(-16\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 20 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-20±\sqrt{400-4\times 6\left(-16\right)}}{2\times 6}
Pūrua 20.
w=\frac{-20±\sqrt{400-24\left(-16\right)}}{2\times 6}
Whakareatia -4 ki te 6.
w=\frac{-20±\sqrt{400+384}}{2\times 6}
Whakareatia -24 ki te -16.
w=\frac{-20±\sqrt{784}}{2\times 6}
Tāpiri 400 ki te 384.
w=\frac{-20±28}{2\times 6}
Tuhia te pūtakerua o te 784.
w=\frac{-20±28}{12}
Whakareatia 2 ki te 6.
w=\frac{8}{12}
Nā, me whakaoti te whārite w=\frac{-20±28}{12} ina he tāpiri te ±. Tāpiri -20 ki te 28.
w=\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
w=-\frac{48}{12}
Nā, me whakaoti te whārite w=\frac{-20±28}{12} ina he tango te ±. Tango 28 mai i -20.
w=-4
Whakawehe -48 ki te 12.
w=\frac{2}{3} w=-4
Kua oti te whārite te whakatau.
3w\left(w+8\right)+w\left(w-4\right)-6=10-2w^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
3w^{2}+24w+w\left(w-4\right)-6=10-2w^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3w ki te w+8.
3w^{2}+24w+w^{2}-4w-6=10-2w^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te w ki te w-4.
4w^{2}+24w-4w-6=10-2w^{2}
Pahekotia te 3w^{2} me w^{2}, ka 4w^{2}.
4w^{2}+20w-6=10-2w^{2}
Pahekotia te 24w me -4w, ka 20w.
4w^{2}+20w-6+2w^{2}=10
Me tāpiri te 2w^{2} ki ngā taha e rua.
6w^{2}+20w-6=10
Pahekotia te 4w^{2} me 2w^{2}, ka 6w^{2}.
6w^{2}+20w=10+6
Me tāpiri te 6 ki ngā taha e rua.
6w^{2}+20w=16
Tāpirihia te 10 ki te 6, ka 16.
\frac{6w^{2}+20w}{6}=\frac{16}{6}
Whakawehea ngā taha e rua ki te 6.
w^{2}+\frac{20}{6}w=\frac{16}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
w^{2}+\frac{10}{3}w=\frac{16}{6}
Whakahekea te hautanga \frac{20}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w^{2}+\frac{10}{3}w=\frac{8}{3}
Whakahekea te hautanga \frac{16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w^{2}+\frac{10}{3}w+\left(\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
Whakawehea te \frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{3}. Nā, tāpiria te pūrua o te \frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+\frac{10}{3}w+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Pūruatia \frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}+\frac{10}{3}w+\frac{25}{9}=\frac{49}{9}
Tāpiri \frac{8}{3} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(w+\frac{5}{3}\right)^{2}=\frac{49}{9}
Tauwehea w^{2}+\frac{10}{3}w+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+\frac{5}{3}=\frac{7}{3} w+\frac{5}{3}=-\frac{7}{3}
Whakarūnātia.
w=\frac{2}{3} w=-4
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}