Whakaoti mō t
t = -\frac{14}{3} = -4\frac{2}{3} \approx -4.666666667
Tohaina
Kua tāruatia ki te papatopenga
3\times 3t=2\left(6t+7\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
9t=2\left(6t+7\right)
Whakareatia te 3 ki te 3, ka 9.
9t=12t+14
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6t+7.
9t-12t=14
Tangohia te 12t mai i ngā taha e rua.
-3t=14
Pahekotia te 9t me -12t, ka -3t.
t=\frac{14}{-3}
Whakawehea ngā taha e rua ki te -3.
t=-\frac{14}{3}
Ka taea te hautanga \frac{14}{-3} te tuhi anō ko -\frac{14}{3} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}